Suppr超能文献

无标记对比显微镜的细胞分割方法:综述与综合比较。

Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison.

机构信息

Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, CZ-61600, Czech Republic.

Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic.

出版信息

BMC Bioinformatics. 2019 Jun 28;20(1):360. doi: 10.1186/s12859-019-2880-8.

Abstract

BACKGROUND

Because of its non-destructive nature, label-free imaging is an important strategy for studying biological processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple contrast microscopic modalities.

RESULTS

We built a collection of routines aimed at image segmentation of viable adherent cells grown on the culture dish acquired by phase contrast, differential interference contrast, Hoffman modulation contrast and quantitative phase imaging, and we performed a comprehensive comparison of available segmentation methods applicable for label-free data. We demonstrated that it is crucial to perform the image reconstruction step, enabling the use of segmentation methods originally not applicable on label-free images. Further we compared foreground segmentation methods (thresholding, feature-extraction, level-set, graph-cut, learning-based), seed-point extraction methods (Laplacian of Gaussians, radial symmetry and distance transform, iterative radial voting, maximally stable extremal region and learning-based) and single cell segmentation methods. We validated suitable set of methods for each microscopy modality and published them online.

CONCLUSIONS

We demonstrate that image reconstruction step allows the use of segmentation methods not originally intended for label-free imaging. In addition to the comprehensive comparison of methods, raw and reconstructed annotated data and Matlab codes are provided.

摘要

背景

由于其非破坏性,无标记成像成为研究生物过程的重要策略。然而,常规的显微镜技术,如相差或 DIC,会受到阴影投射伪影的影响,使得自动分割具有挑战性。本研究的目的是比较来自多个对比显微镜模式的相同细胞的数据集上已发表的分割工作流程(图像重建、前景分割、细胞检测(种子点提取)和细胞(实例)分割)的分割效果。

结果

我们构建了一套针对在培养皿上生长的活贴壁细胞的图像分割的例程,这些细胞通过相差、微分干涉对比、Hoffman 调制对比和定量相位成像获取,我们对适用于无标记数据的可用分割方法进行了全面比较。我们证明了执行图像重建步骤至关重要,这使得能够使用最初不适用于无标记图像的分割方法。此外,我们比较了前景分割方法(阈值、特征提取、水平集、图割、基于学习)、种子点提取方法(高斯拉普拉斯、径向对称和距离变换、迭代径向投票、最大稳定极值区域和基于学习)和单细胞分割方法。我们为每种显微镜模式验证了合适的方法集,并在线发布。

结论

我们证明了图像重建步骤允许使用最初不适用于无标记成像的分割方法。除了对方法进行全面比较外,还提供了原始和重建的带注释数据以及 Matlab 代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15da/6599268/caeb2dd56abe/12859_2019_2880_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验