Suppr超能文献

基于病理图像评估癌症相关生物标志物:一项系统综述。

Evaluating Cancer-Related Biomarkers Based on Pathological Images: A Systematic Review.

作者信息

Xie Xiaoliang, Wang Xulin, Liang Yuebin, Yang Jingya, Wu Yan, Li Li, Sun Xin, Bing Pingping, He Binsheng, Tian Geng, Shi Xiaoli

机构信息

Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.

College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.

出版信息

Front Oncol. 2021 Nov 10;11:763527. doi: 10.3389/fonc.2021.763527. eCollection 2021.

Abstract

Many diseases are accompanied by changes in certain biochemical indicators called biomarkers in cells or tissues. A variety of biomarkers, including proteins, nucleic acids, antibodies, and peptides, have been identified. Tumor biomarkers have been widely used in cancer risk assessment, early screening, diagnosis, prognosis, treatment, and progression monitoring. For example, the number of circulating tumor cell (CTC) is a prognostic indicator of breast cancer overall survival, and tumor mutation burden (TMB) can be used to predict the efficacy of immune checkpoint inhibitors. Currently, clinical methods such as polymerase chain reaction (PCR) and next generation sequencing (NGS) are mainly adopted to evaluate these biomarkers, which are time-consuming and expansive. Pathological image analysis is an essential tool in medical research, disease diagnosis and treatment, functioning by extracting important physiological and pathological information or knowledge from medical images. Recently, deep learning-based analysis on pathological images and morphology to predict tumor biomarkers has attracted great attention from both medical image and machine learning communities, as this combination not only reduces the burden on pathologists but also saves high costs and time. Therefore, it is necessary to summarize the current process of processing pathological images and key steps and methods used in each process, including: (1) pre-processing of pathological images, (2) image segmentation, (3) feature extraction, and (4) feature model construction. This will help people choose better and more appropriate medical image processing methods when predicting tumor biomarkers.

摘要

许多疾病都伴随着细胞或组织中某些被称为生物标志物的生化指标的变化。人们已经鉴定出多种生物标志物,包括蛋白质、核酸、抗体和肽。肿瘤生物标志物已广泛应用于癌症风险评估、早期筛查、诊断、预后、治疗及病情监测。例如,循环肿瘤细胞(CTC)数量是乳腺癌总体生存的预后指标,肿瘤突变负荷(TMB)可用于预测免疫检查点抑制剂的疗效。目前,主要采用聚合酶链反应(PCR)和下一代测序(NGS)等临床方法来评估这些生物标志物,这些方法既耗时又昂贵。病理图像分析是医学研究、疾病诊断和治疗中的一项重要工具,其作用是从医学图像中提取重要的生理和病理信息或知识。最近,基于深度学习的病理图像和形态学分析以预测肿瘤生物标志物受到了医学图像和机器学习领域的极大关注,因为这种结合不仅减轻了病理学家的负担,还节省了高昂的成本和时间。因此,有必要总结当前病理图像处理的流程以及每个流程中使用的关键步骤和方法,包括:(1)病理图像的预处理,(2)图像分割,(3)特征提取,以及(4)特征模型构建。这将有助于人们在预测肿瘤生物标志物时选择更好、更合适的医学图像处理方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c033/8660076/09e7bfd7d769/fonc-11-763527-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验