Wu Guorong, Kim Minjeong, Wang Qian, Shen Dinggang
Department of Radioloy and BRIC, Univerity of North Carolina at Chapel Hill, USA.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):90-7. doi: 10.1007/978-3-642-33418-4_12.
Deformable registration has been widely used in neuroscience studies for spatial normalization of brain images onto a standard space. Due to high anatomical variances across individual brains, registration performance could be limited when trying to estimate entire deformation pathway either from template to subject or subject to template. Symmetric image registration offers an effective way to simultaneously deform template and subject images towards each other until they meet at the middle point. Although some intensity-based registration algorithms have nicely incorporated this concept of symmetric deformation, the intensity matching between two images may not necessarily imply the correct matching of anatomical correspondences. In this paper, we integrate both strategies of hierarchical attribute matching and symmetric diffeomorphic deformation for building a new symmetric-diffeomorphic registration algorithm for MR brain images. The performance of our proposed method has been extensively evaluated and further compared with top-ranked image registration methods (SyN and diffeomorphic Demons) on brain MR images. In all experiments, our registration method achieves the best registration performance, compared to all other state-of-the-art registration methods.
可变形配准已广泛应用于神经科学研究中,用于将脑图像空间归一化到标准空间。由于个体大脑之间存在高度的解剖差异,在尝试估计从模板到受试者或从受试者到模板的整个变形路径时,配准性能可能会受到限制。对称图像配准提供了一种有效的方法,可同时使模板和受试者图像相互变形,直到它们在中间点相遇。尽管一些基于强度的配准算法很好地融入了这种对称变形的概念,但两个图像之间的强度匹配不一定意味着解剖对应关系的正确匹配。在本文中,我们整合了分层属性匹配和对称微分同胚变形这两种策略,以构建一种用于磁共振脑图像的新的对称微分同胚配准算法。我们提出的方法的性能已得到广泛评估,并进一步与脑磁共振图像上排名靠前的图像配准方法(SyN和微分同胚Demons)进行了比较。在所有实验中,与所有其他最新的配准方法相比,我们的配准方法实现了最佳的配准性能。