Suppr超能文献

用于磁共振脑图像的分层属性引导对称微分同胚配准

Hierarchical attribute-guided symmetric diffeomorphic registration for MR brain images.

作者信息

Wu Guorong, Kim Minjeong, Wang Qian, Shen Dinggang

机构信息

Department of Radioloy and BRIC, Univerity of North Carolina at Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 2):90-7. doi: 10.1007/978-3-642-33418-4_12.

Abstract

Deformable registration has been widely used in neuroscience studies for spatial normalization of brain images onto a standard space. Due to high anatomical variances across individual brains, registration performance could be limited when trying to estimate entire deformation pathway either from template to subject or subject to template. Symmetric image registration offers an effective way to simultaneously deform template and subject images towards each other until they meet at the middle point. Although some intensity-based registration algorithms have nicely incorporated this concept of symmetric deformation, the intensity matching between two images may not necessarily imply the correct matching of anatomical correspondences. In this paper, we integrate both strategies of hierarchical attribute matching and symmetric diffeomorphic deformation for building a new symmetric-diffeomorphic registration algorithm for MR brain images. The performance of our proposed method has been extensively evaluated and further compared with top-ranked image registration methods (SyN and diffeomorphic Demons) on brain MR images. In all experiments, our registration method achieves the best registration performance, compared to all other state-of-the-art registration methods.

摘要

可变形配准已广泛应用于神经科学研究中,用于将脑图像空间归一化到标准空间。由于个体大脑之间存在高度的解剖差异,在尝试估计从模板到受试者或从受试者到模板的整个变形路径时,配准性能可能会受到限制。对称图像配准提供了一种有效的方法,可同时使模板和受试者图像相互变形,直到它们在中间点相遇。尽管一些基于强度的配准算法很好地融入了这种对称变形的概念,但两个图像之间的强度匹配不一定意味着解剖对应关系的正确匹配。在本文中,我们整合了分层属性匹配和对称微分同胚变形这两种策略,以构建一种用于磁共振脑图像的新的对称微分同胚配准算法。我们提出的方法的性能已得到广泛评估,并进一步与脑磁共振图像上排名靠前的图像配准方法(SyN和微分同胚Demons)进行了比较。在所有实验中,与所有其他最新的配准方法相比,我们的配准方法实现了最佳的配准性能。

相似文献

1
Hierarchical attribute-guided symmetric diffeomorphic registration for MR brain images.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):90-7. doi: 10.1007/978-3-642-33418-4_12.
2
S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images.
Hum Brain Mapp. 2014 Mar;35(3):1044-60. doi: 10.1002/hbm.22233. Epub 2013 Jan 2.
3
Asymmetric image-template registration.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):565-73. doi: 10.1007/978-3-642-04268-3_70.
4
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.
Neuroimage. 2009 Jul 1;46(3):786-802. doi: 10.1016/j.neuroimage.2008.12.037. Epub 2009 Jan 13.
5
A generalized learning based framework for fast brain image registration.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):306-14. doi: 10.1007/978-3-642-15745-5_38.
6
Groupwise registration by hierarchical anatomical correspondence detection.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):684-91. doi: 10.1007/978-3-642-15745-5_84.
8
Diffeomorphic registration using B-splines.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):702-9. doi: 10.1007/11866763_86.
9
Learning best features for deformable registration of MR brains.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):179-87. doi: 10.1007/11566489_23.
10
Hierarchical segmentation-assisted multimodal registration for MR brain images.
Comput Med Imaging Graph. 2013 Apr;37(3):234-44. doi: 10.1016/j.compmedimag.2013.03.004. Epub 2013 Mar 29.

引用本文的文献

1
End-to-end unsupervised cycle-consistent fully convolutional network for 3D pelvic CT-MR deformable registration.
J Appl Clin Med Phys. 2020 Sep;21(9):193-200. doi: 10.1002/acm2.12968. Epub 2020 Jul 13.
2
Accurate Whole-Brain Segmentation for Alzheimer's Disease Combining an Adaptive Statistical Atlas and Multi-atlas.
Med Comput Vis (2013). 2014;8331:65-73. doi: 10.1007/978-3-319-05530-5_7. Epub 2014 Apr 1.
3
Adversarial learning for mono- or multi-modal registration.
Med Image Anal. 2019 Dec;58:101545. doi: 10.1016/j.media.2019.101545. Epub 2019 Aug 24.
4
aBEAT: a toolbox for consistent analysis of longitudinal adult brain MRI.
PLoS One. 2013;8(4):e60344. doi: 10.1371/journal.pone.0060344. Epub 2013 Apr 3.

本文引用的文献

1
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.
Neuroimage. 2009 Jul 1;46(3):786-802. doi: 10.1016/j.neuroimage.2008.12.037. Epub 2009 Jan 13.
2
Diffeomorphic demons: efficient non-parametric image registration.
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.
3
Construction of a 3D probabilistic atlas of human cortical structures.
Neuroimage. 2008 Feb 1;39(3):1064-80. doi: 10.1016/j.neuroimage.2007.09.031. Epub 2007 Nov 26.
5
A survey of medical image registration.
Med Image Anal. 1998 Mar;2(1):1-36. doi: 10.1016/s1361-8415(01)80026-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验