Wasza Jakob, Bauer Sebastian, Hornegger Joachim
Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):576-83. doi: 10.1007/978-3-642-33418-4_71.
Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.
在过去几年中,已提出距离成像(RI)技术用于运动补偿中的患者定位和呼吸分析。然而,当前基于RI的患者定位方法采用刚体变换,从而忽略了呼吸运动引起的自由形式变形。此外,基于RI的呼吸分析依赖于运行时间为几秒的非刚性配准技术。在本文中,我们提出了一个基于RI的实时框架,以联合方式执行呼吸运动补偿定位和非刚性表面变形估计。我们方法的核心是预先通过程序获得的4D形状先验,其驱动患者在程序内与参考状态对齐,同时产生刚体台架变换和考虑呼吸运动的自由形式变形。我们表明,我们的方法在旋转和平移精度方面分别比传统对齐策略高出3.0倍和2.3倍。通过基于GPU的实现,我们实现了40毫秒的运行时间。