Suppr超能文献

使用四维形状先验的实时运动补偿患者定位和非刚性变形估计。

Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

作者信息

Wasza Jakob, Bauer Sebastian, Hornegger Joachim

机构信息

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 2):576-83. doi: 10.1007/978-3-642-33418-4_71.

Abstract

Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

摘要

在过去几年中,已提出距离成像(RI)技术用于运动补偿中的患者定位和呼吸分析。然而,当前基于RI的患者定位方法采用刚体变换,从而忽略了呼吸运动引起的自由形式变形。此外,基于RI的呼吸分析依赖于运行时间为几秒的非刚性配准技术。在本文中,我们提出了一个基于RI的实时框架,以联合方式执行呼吸运动补偿定位和非刚性表面变形估计。我们方法的核心是预先通过程序获得的4D形状先验,其驱动患者在程序内与参考状态对齐,同时产生刚体台架变换和考虑呼吸运动的自由形式变形。我们表明,我们的方法在旋转和平移精度方面分别比传统对齐策略高出3.0倍和2.3倍。通过基于GPU的实现,我们实现了40毫秒的运行时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验