Suppr超能文献

使用元分析数据库通过迁移学习提高准确性和效能。

Improving accuracy and power with transfer learning using a meta-analytic database.

作者信息

Schwartz Yannick, Varoquaux Gaël, Pallier Christophe, Pinel Philippe, Poline Jean-Baptiste, Thirion Bertrand

机构信息

Parietal Team, INRIA Saclay-Ile-de-France, Saclay, France.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):248-55. doi: 10.1007/978-3-642-33454-2_31.

Abstract

Typical cohorts in brain imaging studies are not large enough for systematic testing of all the information contained in the images. To build testable working hypotheses, investigators thus rely on analysis of previous work, sometimes formalized in a so-called meta-analysis. In brain imaging, this approach underlies the specification of regions of interest (ROIs) that are usually selected on the basis of the coordinates of previously detected effects. In this paper, we propose to use a database of images, rather than coordinates, and frame the problem as transfer learning: learning a discriminant model on a reference task to apply it to a different but related new task. To facilitate statistical analysis of small cohorts, we use a sparse discriminant model that selects predictive voxels on the reference task and thus provides a principled procedure to define ROIs. The benefits of our approach are twofold. First it uses the reference database for prediction, i.e., to provide potential biomarkers in a clinical setting. Second it increases statistical power on the new task. We demonstrate on a set of 18 pairs of functional MRI experimental conditions that our approach gives good prediction. In addition, on a specific transfer situation involving different scanners at different locations, we show that voxel selection based on transfer learning leads to higher detection power on small cohorts.

摘要

脑成像研究中的典型队列规模不足以对图像中包含的所有信息进行系统测试。为了构建可测试的工作假设,研究人员因此依赖于对先前工作的分析,有时会以所谓的荟萃分析形式进行形式化。在脑成像中,这种方法是基于兴趣区域(ROI)的指定,这些区域通常是根据先前检测到的效应的坐标来选择的。在本文中,我们建议使用图像数据库而非坐标,并将问题框架化为迁移学习:在参考任务上学习判别模型以将其应用于不同但相关的新任务。为了便于对小队列进行统计分析,我们使用稀疏判别模型,该模型在参考任务上选择预测体素,从而提供一种有原则的程序来定义ROI。我们方法的好处有两个方面。首先,它使用参考数据库进行预测,即在临床环境中提供潜在的生物标志物。其次,它提高了新任务的统计功效。我们在一组18对功能磁共振成像实验条件上证明了我们的方法具有良好的预测效果。此外,在涉及不同地点不同扫描仪的特定迁移情况下,我们表明基于迁移学习的体素选择在小队列上具有更高的检测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验