Suppr超能文献

基于相干功能交互模式的功能磁共振成像衍生感兴趣区域的优化

Optimization of fMRI-derived ROIs based on coherent functional interaction patterns.

作者信息

Deng Fan, Zhu Dajiang, Liu Tianming

机构信息

Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):214-22. doi: 10.1007/978-3-642-33454-2_27.

Abstract

Accurate localization of functionally meaningful Regions of Interests (ROIs) from fMRI data is critically important to functional brain imaging. A variety of established approaches such as general linear model (GLM) have been widely used in the community. How to determine the optimal location and size of an fMRI-derived ROI, however, remains an open, challenging problem. This paper presents a novel individualized optimization algorithm that simultaneously optimizes the locations and sizes of fMRI-derived ROIs by maximizing the coherences of their functional interaction patterns with respect to the block-based paradigm. As an alternative ROI optimization approach using functional interaction patterns, the algorithm was applied on a working memory task-based fMRI dataset and the experimental results are promising.

摘要

从功能磁共振成像(fMRI)数据中准确定位具有功能意义的感兴趣区域(ROI)对于功能性脑成像至关重要。各种已确立的方法,如通用线性模型(GLM),已在该领域广泛使用。然而,如何确定基于fMRI得出的ROI的最佳位置和大小仍然是一个悬而未决的、具有挑战性的问题。本文提出了一种新颖的个性化优化算法,该算法通过最大化基于块范式的功能交互模式的一致性,同时优化基于fMRI得出的ROI的位置和大小。作为一种使用功能交互模式的替代ROI优化方法,该算法应用于基于工作记忆任务的fMRI数据集,实验结果很有前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验