Deng Fan, Zhu Dajiang, Liu Tianming
Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):214-22. doi: 10.1007/978-3-642-33454-2_27.
Accurate localization of functionally meaningful Regions of Interests (ROIs) from fMRI data is critically important to functional brain imaging. A variety of established approaches such as general linear model (GLM) have been widely used in the community. How to determine the optimal location and size of an fMRI-derived ROI, however, remains an open, challenging problem. This paper presents a novel individualized optimization algorithm that simultaneously optimizes the locations and sizes of fMRI-derived ROIs by maximizing the coherences of their functional interaction patterns with respect to the block-based paradigm. As an alternative ROI optimization approach using functional interaction patterns, the algorithm was applied on a working memory task-based fMRI dataset and the experimental results are promising.
从功能磁共振成像(fMRI)数据中准确定位具有功能意义的感兴趣区域(ROI)对于功能性脑成像至关重要。各种已确立的方法,如通用线性模型(GLM),已在该领域广泛使用。然而,如何确定基于fMRI得出的ROI的最佳位置和大小仍然是一个悬而未决的、具有挑战性的问题。本文提出了一种新颖的个性化优化算法,该算法通过最大化基于块范式的功能交互模式的一致性,同时优化基于fMRI得出的ROI的位置和大小。作为一种使用功能交互模式的替代ROI优化方法,该算法应用于基于工作记忆任务的fMRI数据集,实验结果很有前景。