Suppr超能文献

通过最大化结构连接图谱的一致性来优化功能脑 ROI。

Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles.

机构信息

Department of Computer Science, the University of Georgia, Athens, GA, USA.

出版信息

Neuroimage. 2012 Jan 16;59(2):1382-93. doi: 10.1016/j.neuroimage.2011.08.037. Epub 2011 Aug 19.

Abstract

Segregation and integration are two general principles of the brain's functional architecture. Therefore, brain network analysis is of significant importance in understanding brain function. Critical to brain network construction and analysis is the identification of reliable, reproducible, and accurate network nodes, or Regions of Interest (ROIs). Task-based fMRI has been widely considered as a reliable approach to identify functionally meaningful ROIs in the brain. However, recent studies have shown that factors such as spatial smoothing could considerably shift the locations of detected activation peaks. As a result, structural and functional connectivity patterns can be significantly altered. Here, we propose a novel framework by which to optimize ROI sizes and locations, ensuring that differences between the structural connectivity profiles among a group of subjects is minimized. This framework is based on functional ROIs derived from task-based fMRI and diffusion tensor imaging (DTI) data. Accordingly, we present a new approach to describe and measure the fiber bundle similarity quantitatively within and across subjects which will facilitate the optimization procedure. Experimental results demonstrated that this framework improved the localizations of fMRI-derived ROIs. Through our optimization procedure, structural and functional connectivities were more consistent across different individuals. Overall, the ability to accurately localize network ROIs could facilitate many applications in brain imaging that rely on the accurate identification of ROIs.

摘要

分群和整合是大脑功能架构的两个一般原则。因此,脑网络分析对于理解大脑功能非常重要。脑网络构建和分析的关键是识别可靠、可重复和准确的网络节点,即感兴趣区域(ROI)。基于任务的 fMRI 已被广泛认为是识别大脑中具有功能意义的 ROI 的可靠方法。然而,最近的研究表明,空间平滑等因素会极大地改变检测到的激活峰的位置。因此,结构和功能连接模式可能会发生显著变化。在这里,我们提出了一个优化 ROI 大小和位置的新框架,以确保一组被试的结构连接图谱之间的差异最小化。该框架基于来自基于任务的 fMRI 和弥散张量成像(DTI)数据的功能 ROI。因此,我们提出了一种新的方法来描述和定量测量纤维束相似性,以便于优化过程。实验结果表明,该框架提高了 fMRI 衍生 ROI 的定位精度。通过我们的优化过程,结构和功能连接在不同个体之间更加一致。总的来说,准确定位网络 ROI 的能力可以促进许多依赖于准确识别 ROI 的脑成像应用。

相似文献

1
Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles.
Neuroimage. 2012 Jan 16;59(2):1382-93. doi: 10.1016/j.neuroimage.2011.08.037. Epub 2011 Aug 19.
2
Optimization of fMRI-derived ROIs based on coherent functional interaction patterns.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):214-22. doi: 10.1007/978-3-642-33454-2_27.
4
Discovering dense and consistent landmarks in the brain.
Inf Process Med Imaging. 2011;22:97-110. doi: 10.1007/978-3-642-22092-0_9.
5
Fiber-centered analysis of brain connectivities using DTI and resting state FMRI data.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):143-50. doi: 10.1007/978-3-642-15745-5_18.
7
Learning an atlas of a cognitive process in its functional geometry.
Inf Process Med Imaging. 2011;22:135-46. doi: 10.1007/978-3-642-22092-0_12.
8
Group-wise FMRI activation detection on corresponding cortical landmarks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):665-73. doi: 10.1007/978-3-642-40763-5_82.
9
Automatic sleep staging using fMRI functional connectivity data.
Neuroimage. 2012 Oct 15;63(1):63-72. doi: 10.1016/j.neuroimage.2012.06.036. Epub 2012 Jun 26.
10
Structural analysis of fMRI data revisited: improving the sensitivity and reliability of fMRI group studies.
IEEE Trans Med Imaging. 2007 Sep;26(9):1256-69. doi: 10.1109/TMI.2007.903226.

引用本文的文献

2
MILD COGNITIVE IMPAIRMENT CLASSIFICATION USING A NOVEL FINER-SCALE BRAIN CONNECTOME.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635558. Epub 2024 Aug 22.
3
Predicting brain structural network using functional connectivity.
Med Image Anal. 2022 Jul;79:102463. doi: 10.1016/j.media.2022.102463. Epub 2022 Apr 22.
4
Assessing Fine-Granularity Structural and Functional Connectivity in Children With Attention Deficit Hyperactivity Disorder.
Front Hum Neurosci. 2020 Nov 13;14:594830. doi: 10.3389/fnhum.2020.594830. eCollection 2020.
5
Nonparenchymal fluid is the source of increased mean diffusivity in preclinical Alzheimer's disease.
Alzheimers Dement (Amst). 2019 Apr 22;11:348-354. doi: 10.1016/j.dadm.2019.03.002. eCollection 2019 Dec.
7
Elucidating functional differences between cortical gyri and sulci via sparse representation HCP grayordinate fMRI data.
Brain Res. 2017 Oct 1;1672:81-90. doi: 10.1016/j.brainres.2017.07.018. Epub 2017 Jul 28.
9
Degree-based statistic and center persistency for brain connectivity analysis.
Hum Brain Mapp. 2017 Jan;38(1):165-181. doi: 10.1002/hbm.23352. Epub 2016 Sep 4.
10
Connectome-scale assessment of structural and functional connectivity in mild traumatic brain injury at the acute stage.
Neuroimage Clin. 2016 Jun 16;12:100-115. doi: 10.1016/j.nicl.2016.06.012. eCollection 2016.

本文引用的文献

1
Feature-based groupwise registration by hierarchical anatomical correspondence detection.
Hum Brain Mapp. 2012 Feb;33(2):253-71. doi: 10.1002/hbm.21209. Epub 2011 Mar 9.
2
Complex span tasks and hippocampal recruitment during working memory.
Neuroimage. 2011 Mar 15;55(2):773-87. doi: 10.1016/j.neuroimage.2010.12.033. Epub 2010 Dec 21.
3
The organization of local and distant functional connectivity in the human brain.
PLoS Comput Biol. 2010 Jun 10;6(6):e1000808. doi: 10.1371/journal.pcbi.1000808.
4
The brain's router: a cortical network model of serial processing in the primate brain.
PLoS Comput Biol. 2010 Apr 29;6(4):e1000765. doi: 10.1371/journal.pcbi.1000765.
5
Clustering Fiber Traces Using Normalized Cuts.
Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375. doi: 10.1007/b100265.
6
Toward discovery science of human brain function.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9. doi: 10.1073/pnas.0911855107. Epub 2010 Feb 22.
7
MR connectomics: Principles and challenges.
J Neurosci Methods. 2010 Dec 15;194(1):34-45. doi: 10.1016/j.jneumeth.2010.01.014. Epub 2010 Jan 22.
8
Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization.
J Neurophysiol. 2010 Jan;103(1):297-321. doi: 10.1152/jn.00783.2009. Epub 2009 Nov 4.
9
Modalities, modes, and models in functional neuroimaging.
Science. 2009 Oct 16;326(5951):399-403. doi: 10.1126/science.1174521.
10
Complex brain networks: graph theoretical analysis of structural and functional systems.
Nat Rev Neurosci. 2009 Mar;10(3):186-98. doi: 10.1038/nrn2575. Epub 2009 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验