Chen Lei, Hagenah Johann, Mertins Alfred
Institute for Signal Processing, University of Luebeck, Germany.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):272-9. doi: 10.1007/978-3-642-33454-2_34.
Transcranial sonography (TCS) is a new tool for the diagnosis of Parkinson's disease (PD) according to a distinct hyperechogenic pattern in the substantia nigra (SN) region. However a procedure including rating scale of SN hyperechogenicity was required for a standard clinical setting with increased use. We applied the feature analysis method to a large TCS dataset that is relevant for clinical practice and includes the variability that is present under real conditions. In order to decrease the influence to the image properties from the different settings of ultrasound machine, we propose a local image analysis method using an invariant scale blob detection for the hyperechogenicity estimation. The local features are extracted from the detected blobs and the watershed regions in half of mesencephalon area. The performance of these features is evaluated by a feature-selection method. The cross validation results show that the local features could be used for PD detection.
经颅超声检查(TCS)是一种根据黑质(SN)区域明显的高回声模式诊断帕金森病(PD)的新工具。然而,在标准临床环境中增加使用量时,需要一种包括SN高回声评级量表的程序。我们将特征分析方法应用于一个与临床实践相关的大型TCS数据集,该数据集包含实际条件下存在的变异性。为了减少超声机器不同设置对图像属性的影响,我们提出了一种使用不变尺度斑点检测进行高回声估计的局部图像分析方法。从检测到的斑点和中脑区域一半的分水岭区域提取局部特征。通过特征选择方法评估这些特征的性能。交叉验证结果表明,局部特征可用于PD检测。