Suppr超能文献

感兴趣区大小对基于经颅超声的帕金森病计算机辅助诊断的影响。

Impact of region of interest size on transcranial sonography based computer-aided diagnosis for Parkinson's disease.

作者信息

Fei Xiao Yan, Dong Yun, An He di, Zhang Qi, Zhang Ying Chun, Shi Jun

机构信息

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China.

Department of Ultrasonography, Shanghai East Hospital of Tongji University, Shanghai, China.

出版信息

Math Biosci Eng. 2019 Jun 18;16(5):5640-5651. doi: 10.3934/mbe.2019280.

Abstract

Transcranial sonography (TCS) has gained increasing application for diagnosis of Parkinson's disease (PD) in clinical practice in recent years, because most PD patients, even in the early stage of PD, have abnormal hyperechogenicity of the substantia nigra (SN) in brainstem shown in TCS images. Therefore, the region of interest (ROI) for feature extraction should cover the SN region in a computer-aided diagnosis (CAD) system. The ROI size naturally affects the feature representation. However, there currently exist no unified standard for determining the size of ROI. In this work, we quantitatively compare the performance of TCS-based CAD with three sizes of ROIs, namely the entire midbrain (EM) region, the half of midbrain (HoM) region and the SN region. The experimental results on the original extracted features and the features by dimensionality reduction show that ROI covering the EM region achieves the overall best diagnosis performance. The results indicates that the neighboring regions around SN might also have abnormal symptoms, which cannot be clearly observed with naked eyes. It suggests that the large ROI includes more information for feature representation to improve the diagnosis performance of TCS-based CAD for PD.

摘要

近年来,经颅超声检查(TCS)在帕金森病(PD)的临床诊断中应用越来越广泛,因为大多数PD患者,即使在疾病早期,经颅超声图像显示脑干黑质(SN)存在异常高回声。因此,在计算机辅助诊断(CAD)系统中,用于特征提取的感兴趣区域(ROI)应覆盖SN区域。ROI大小自然会影响特征表示。然而,目前尚无确定ROI大小的统一标准。在这项工作中,我们定量比较了基于TCS的CAD在三种ROI大小下的性能,即整个中脑(EM)区域、中脑一半(HoM)区域和SN区域。对原始提取特征和降维后特征的实验结果表明覆盖EM区域的ROI实现了整体最佳诊断性能。结果表明SN周围的相邻区域可能也有异常症状,肉眼无法清晰观察到。这表明大的ROI包含更多用于特征表示的信息,以提高基于TCS的CAD对PD的诊断性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验