Suppr超能文献

用于经颅超声检查帕金森病检测的注意力增强扩张卷积

Attention-enhanced dilated convolution for Parkinson's disease detection using transcranial sonography.

作者信息

Chen Shuang, Shi Yuting, Wan Linlin, Liu Jing, Wan Yongyan, Jiang Hong, Qiu Rong

机构信息

School of Computer Science and Engineering, Central South University, No.932 South Lushan Road, Changsha, 410083, Hunan, China.

Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410083, China.

出版信息

Biomed Eng Online. 2024 Jul 31;23(1):76. doi: 10.1186/s12938-024-01265-5.

Abstract

BACKGROUND

Transcranial sonography (TCS) plays a crucial role in diagnosing Parkinson's disease. However, the intricate nature of TCS pathological features, the lack of consistent diagnostic criteria, and the dependence on physicians' expertise can hinder accurate diagnosis. Current TCS-based diagnostic methods, which rely on machine learning, often involve complex feature engineering and may struggle to capture deep image features. While deep learning offers advantages in image processing, it has not been tailored to address specific TCS and movement disorder considerations. Consequently, there is a scarcity of research on deep learning algorithms for TCS-based PD diagnosis.

METHODS

This study introduces a deep learning residual network model, augmented with attention mechanisms and multi-scale feature extraction, termed AMSNet, to assist in accurate diagnosis. Initially, a multi-scale feature extraction module is implemented to robustly handle the irregular morphological features and significant area information present in TCS images. This module effectively mitigates the effects of artifacts and noise. When combined with a convolutional attention module, it enhances the model's ability to learn features of lesion areas. Subsequently, a residual network architecture, integrated with channel attention, is utilized to capture hierarchical and detailed textures within the images, further enhancing the model's feature representation capabilities.

RESULTS

The study compiled TCS images and personal data from 1109 participants. Experiments conducted on this dataset demonstrated that AMSNet achieved remarkable classification accuracy (92.79%), precision (95.42%), and specificity (93.1%). It surpassed the performance of previously employed machine learning algorithms in this domain, as well as current general-purpose deep learning models.

CONCLUSION

The AMSNet proposed in this study deviates from traditional machine learning approaches that necessitate intricate feature engineering. It is capable of automatically extracting and learning deep pathological features, and has the capacity to comprehend and articulate complex data. This underscores the substantial potential of deep learning methods in the application of TCS images for the diagnosis of movement disorders.

摘要

背景

经颅超声检查(TCS)在帕金森病的诊断中起着至关重要的作用。然而,TCS病理特征的复杂性、缺乏一致的诊断标准以及对医生专业知识的依赖可能会阻碍准确诊断。当前基于TCS的诊断方法依赖机器学习,通常涉及复杂的特征工程,可能难以捕捉深层图像特征。虽然深度学习在图像处理方面具有优势,但尚未针对特定的TCS和运动障碍考量进行定制。因此,关于基于TCS的帕金森病诊断的深度学习算法的研究较少。

方法

本研究引入了一种深度学习残差网络模型,该模型通过注意力机制和多尺度特征提取进行增强,称为AMSNet,以协助准确诊断。首先,实现了一个多尺度特征提取模块,以稳健地处理TCS图像中存在的不规则形态特征和重要区域信息。该模块有效地减轻了伪影和噪声的影响。当与卷积注意力模块结合时,它增强了模型学习病变区域特征的能力。随后,利用与通道注意力集成的残差网络架构来捕捉图像内的分层和详细纹理,进一步增强模型的特征表示能力。

结果

该研究收集了1109名参与者的TCS图像和个人数据。在这个数据集上进行的实验表明,AMSNet取得了显著的分类准确率(92.79%)、精确率(95.42%)和特异性(93.1%)。它超过了该领域先前使用的机器学习算法以及当前的通用深度学习模型的性能。

结论

本研究中提出的AMSNet不同于需要复杂特征工程的传统机器学习方法。它能够自动提取和学习深层病理特征,并能够理解和阐明复杂数据。这突出了深度学习方法在应用TCS图像诊断运动障碍方面的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e7d/11290250/23b544735b56/12938_2024_1265_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验