Shao Hongwei, He Ying, Li King C P, Zhou Xiaobo
Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, USA.
Mol Biosyst. 2013 Mar;9(3):398-406. doi: 10.1039/c2mb25370d. Epub 2013 Jan 4.
Amyotrophic lateral sclerosis (ALS) is a devastating and chronic neurodegenerative disease without any known cure. In the brain and spinal cord of both patients and animal models with ALS, neuroinflammation is a prominent pathological hallmark which is characterized by infiltrating T cells at sites of motor neuron injury. Their presence in mutant Cu(2+)/Zn(2+) superoxide dismutase (mSOD1) induced ALS plays an important role in shifting the response of microglia from neuroprotective to neurotoxic. In order to better understand how these cells and their communication network collectively modulate the disease progression, we have established a mathematical model integrating diverse cells and cytokines. According to the experimental data sets, we first refined this model by identifying a link between TGFβ and M1 microglia which can produce an optimized model to fit data sets better. Then based on this model, parameters were estimated using genetic algorithm. Sensitivity analysis of these parameters identified several factors such as the release rate of IFNγ by T helper 1 (Th1) cells, which may be related to the heterogeneity between the patients with different survival times. Furthermore, the tests on T cell based therapeutic strategies indicated that elimination of Th1 cells is the most effective approach extending survival time. This confirmed the dominant role of Th1 cells in leading the rapid disorder in the later stage of ALS. For the therapies targeting cytokines, injection of IL6 can essentially augment the neuroprotective response and extend the life effectively by elevating the level of IL4, a neuroprotective cytokine, while directly injected IL4 will decay rapidly in the ALS microenvironment and cannot provide a persistent protective effect. On the other hand, in spite of the attractive effect of direct elimination of mSOD1 or self-antigen, it is difficult to implement in CNS. As an alternative, elimination of IFNγ can be chosen as another effective therapy. In the future, if we combine the side effects of different therapies, this model can be used to optimize the therapeutic strategies so that they can effectively improve survival rates and quality of life for patients with ALS.
肌萎缩侧索硬化症(ALS)是一种毁灭性的慢性神经退行性疾病,目前尚无已知的治愈方法。在ALS患者和动物模型的大脑和脊髓中,神经炎症是一个突出的病理特征,其特点是在运动神经元损伤部位有T细胞浸润。它们在突变型铜(2+)/锌(2+)超氧化物歧化酶(mSOD1)诱导的ALS中的存在,在将小胶质细胞的反应从神经保护转变为神经毒性方面起着重要作用。为了更好地理解这些细胞及其通讯网络如何共同调节疾病进展,我们建立了一个整合多种细胞和细胞因子的数学模型。根据实验数据集,我们首先通过确定转化生长因子β(TGFβ)和M1小胶质细胞之间的联系来优化这个模型,从而产生一个能更好拟合数据集的优化模型。然后基于这个模型,使用遗传算法估计参数。对这些参数的敏感性分析确定了几个因素,如辅助性T细胞1(Th1)释放干扰素γ(IFNγ)的速率,这可能与不同生存时间患者之间的异质性有关。此外,基于T细胞的治疗策略测试表明,消除Th1细胞是延长生存时间最有效的方法。这证实了Th1细胞在导致ALS后期快速紊乱中的主导作用。对于针对细胞因子的疗法,注射白细胞介素6(IL6)可以通过提高神经保护细胞因子白细胞介素4(IL4)的水平,基本上增强神经保护反应并有效延长寿命,而直接注射IL4在ALS微环境中会迅速降解,无法提供持续的保护作用。另一方面,尽管直接消除mSOD1或自身抗原有诱人的效果,但在中枢神经系统中难以实施。作为一种替代方法,可以选择消除IFNγ作为另一种有效的治疗方法。未来,如果我们综合考虑不同疗法的副作用,这个模型可用于优化治疗策略,从而有效提高ALS患者的生存率和生活质量。