Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany.
Science. 2013 Jan 4;339(6115):52-5. doi: 10.1126/science.1227831.
Absolute temperature is usually bound to be positive. Under special conditions, however, negative temperatures-in which high-energy states are more occupied than low-energy states-are also possible. Such states have been demonstrated in localized systems with finite, discrete spectra. Here, we prepared a negative temperature state for motional degrees of freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting ensemble of ultracold bosons at negative temperature that is stable against collapse for arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites. Negative temperatures imply negative pressures and open up new parameter regimes for cold atoms, enabling fundamentally new many-body states.
绝对温度通常必须为正。然而,在特殊条件下,也可能存在负温度——其中高能态比低能态更占据优势。这种状态已经在具有有限离散谱的局域系统中得到了证明。在这里,我们为运动自由度准备了一个负温度状态。通过定制玻色-哈伯德哈密顿量,我们在负温度下创建了一个有吸引力的相互作用的超冷玻色子集合,对于任意原子数都是稳定的,不会发生崩塌。准动量分布在能带边缘处呈现出尖锐的峰值,揭示了热平衡和玻色相干性跨越几个晶格位置。负温度意味着负压力,并为冷原子开辟了新的参数范围,从而实现了全新的多体状态。