Suppr超能文献

热力学第二定律的唯象表述与统计表述的修正

Revisions of the Phenomenological and Statistical Statements of the Second Law of Thermodynamics.

作者信息

Koczan Grzegorz Marcin, Zivieri Roberto

机构信息

Department of Mechanical Processing of Wood, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.

Istituto Nazionale di Alta Matematica (INdAM), 00185 Rome, Italy.

出版信息

Entropy (Basel). 2024 Dec 22;26(12):1122. doi: 10.3390/e26121122.

Abstract

The status of the Second Law of Thermodynamics, even in the 21st century, is not as certain as when Arthur Eddington wrote about it a hundred years ago. It is not only about the truth of this law, but rather about its strict and exhaustive formulation. In the previous article, it was shown that two of the three most famous thermodynamic formulations of the Second Law of Thermodynamics are non-exhaustive. However, the status of the statistical approach, contrary to common and unfounded opinions, is even more difficult. It is known that Boltzmann did not manage to completely and correctly derive the Second Law of Thermodynamics from statistical mechanics, even though he probably did everything he could in this regard. In particular, he introduced molecular chaos into the extension of the Liouville equation, obtaining the Boltzmann equation. By using the theorem, Boltzmann transferred the Second Law of Thermodynamics thesis to the molecular chaos hypothesis, which is not considered to be fully true. Therefore, the authors present a detailed and critical review of the issue of the Second Law of Thermodynamics and entropy from the perspective of phenomenological thermodynamics and statistical mechanics, as well as kinetic theory. On this basis, Propositions 1-3 for the statements of the Second Law of Thermodynamics are formulated in the original part of the article. Proposition 1 is based on resolving the misunderstanding of the of the Second Kind by introducing the of the Third Kind. Proposition 2 specifies the structure of allowed thermodynamic processes by using the Inequality of Heat and Temperature Proportions inspired by Eudoxus of Cnidus's inequalities defining real numbers. Proposition 3 is a Probabilistic Scheme of the Second Law of Thermodynamics that, like a game, shows the statistical tendency for entropy to increase, even though the possibility of it decreasing cannot be completely ruled out. Proposition 3 is, in some sense, free from Loschmidt's irreversibility paradox.

摘要

即使在21世纪,热力学第二定律的地位也不像亚瑟·爱丁顿在一百年前论述它时那样确定。这不仅关乎该定律的真实性,更关乎其严格且详尽的表述。在上一篇文章中表明,热力学第二定律最著名的三种热力学表述中的两种并不详尽。然而,与常见且毫无根据的观点相反,统计方法的地位甚至更难确定。众所周知,玻尔兹曼未能从统计力学中完全且正确地推导出热力学第二定律,尽管他在这方面可能已经竭尽全力。特别是,他在刘维尔方程的扩展中引入了分子混沌,从而得到了玻尔兹曼方程。通过使用该定理,玻尔兹曼将热力学第二定律的命题转移到了分子混沌假设上,而这个假设并不被认为是完全正确的。因此,作者从唯象热力学、统计力学以及动力学理论的角度,对热力学第二定律和熵的问题进行了详细且批判性的综述。在此基础上,在文章的原创部分提出了热力学第二定律陈述的命题1 - 3。命题1基于通过引入第三类不可逆性来解决对第二类不可逆性的误解。命题2利用受定义实数的昔兰尼的欧多克索斯不等式启发的热与温度比例不等式来指定允许的热力学过程的结构。命题3是热力学第二定律的概率方案,它像一场游戏一样,展示了熵增加的统计趋势,尽管不能完全排除熵减少的可能性。在某种意义上,命题3不受洛施密特不可逆性悖论的影响。

相似文献

3
Statistical thermodynamics of quantum Brownian motion: construction of perpetuum mobile of the second kind.量子布朗运动的统计热力学:第二类永动机的构建。
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2A):036102. doi: 10.1103/PhysRevE.66.036102. Epub 2002 Sep 5.
7
Taking up statistical thermodynamics: Equilibrium fluctuations and irreversibility.《论统计热力学:平衡涨落与不可逆性》
Stud Hist Philos Sci. 2021 Feb;85:176-184. doi: 10.1016/j.shpsa.2020.10.006. Epub 2020 Nov 1.
8
Second Law of Thermodynamics without Einstein Relation.没有爱因斯坦关系的热力学第二定律。
Phys Rev Lett. 2024 Dec 31;133(26):267101. doi: 10.1103/PhysRevLett.133.267101.
9
Theory for non-equilibrium statistical mechanics.非平衡统计力学理论。
Phys Chem Chem Phys. 2006 Aug 21;8(31):3585-611. doi: 10.1039/b604284h. Epub 2006 Jul 7.

本文引用的文献

1
Trends in the Second Law of Thermodynamics.热力学第二定律的发展趋势。
Entropy (Basel). 2023 Sep 10;25(9):1321. doi: 10.3390/e25091321.
5
8
Fluctuation theorem for Hamiltonian systems: Le Chatelier's principle.哈密顿系统的涨落定理:勒夏特列原理。
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May;63(5 Pt 1):051105. doi: 10.1103/PhysRevE.63.051105. Epub 2001 Apr 16.
9
Dynamical Ensembles in Nonequilibrium Statistical Mechanics.非平衡统计力学中的动力学系综
Phys Rev Lett. 1995 Apr 3;74(14):2694-2697. doi: 10.1103/PhysRevLett.74.2694.
10
Probability of second law violations in shearing steady states.剪切稳态下违反第二定律的概率。
Phys Rev Lett. 1993 Oct 11;71(15):2401-2404. doi: 10.1103/PhysRevLett.71.2401.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验