Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA.
J Appl Physiol (1985). 2013 Mar 1;114(5):665-74. doi: 10.1152/japplphysiol.00661.2012. Epub 2013 Jan 3.
Individuals working in commercial hog confinement facilities have elevated incidences of headaches, depression, nausea, skeletal muscle weakness, fatigue, gastrointestinal disorders, and cardiovascular diseases, and the molecular mechanisms for these nonrespiratory ailments remain incompletely undefined. A common element underlying these diverse pathophysiologies is perturbation of intracellular Ca(2+) homeostasis. This study assessed whether the dust generated inside hog confinement facilities contains compounds that alter Ca(2+) mobilization via ryanodine receptors (RyRs), key intracellular channels responsible for mobilizing Ca(2+) from internal stores to elicit an array of physiologic functions. Hog barn dust (HBD) was extracted with phosphate-buffered saline, sterile-filtered (0.22 μm), and size-separated using Sephadex G-100 resin. Fractions (F) 1 through 9 (Mw >10,000 Da) had no measurable effects on RyR isoforms. However, F10 through F17, which contained compounds of Mw ≤2,000 Da, modulated the [(3)H]ryanodine binding to RyR1, RyR2, and RyR3 in a biphasic (Gaussian) manner. The Ki values for F13, the most potent fraction, were 3.8 ± 0.2 μg/ml for RyR1, 0.2 ± 0.01 μg/ml and 19.1 ± 2.8 μg/ml for RyR2 (two binding sites), and 44.9 ± 2.8 μg/ml and 501.6 ± 9.2 μg/ml for RyR3 (two binding sites). In lipid bilayer assays, F13 dose-dependently decreased the open probabilities of RyR1, RyR2, and RyR3. Pretreating differentiated mouse skeletal myotubes (C2C12 cells) with F13 blunted the amplitudes of ryanodine- and K(+)-induced Ca(2+) transients. Because RyRs are present in many cell types, impairment in Ca(2+) mobilization from internal stores via these channels is a possible mechanism by which HBD may trigger these seemingly unrelated pathophysiologies.
在商业养猪场工作的个体中,头痛、抑郁、恶心、骨骼肌无力、疲劳、胃肠道疾病和心血管疾病的发生率较高,这些非呼吸道疾病的分子机制仍不完全明确。这些不同病理生理学的一个共同基础是细胞内 Ca(2+)稳态的紊乱。本研究评估了猪舍内产生的粉尘是否含有通过兰尼碱受体 (RyRs)改变 Ca(2+)动员的化合物,RyRs 是负责从内部储存库动员 Ca(2+)以引发一系列生理功能的关键细胞内通道。猪舍粉尘 (HBD) 用磷酸盐缓冲盐水提取,无菌过滤 (0.22 μm),并使用 Sephadex G-100 树脂进行大小分离。Fractions (F) 1 至 9 (Mw >10,000 Da) 对 RyR 同工型没有可测量的影响。然而,F10 至 F17 含有 Mw ≤2,000 Da 的化合物,以双相 (高斯) 方式调节 [(3)H]ryanodine 与 RyR1、RyR2 和 RyR3 的结合。最有效的分数 F13 的 Ki 值分别为 RyR1 的 3.8 ± 0.2 μg/ml、RyR2(两个结合位点)的 0.2 ± 0.01 μg/ml 和 19.1 ± 2.8 μg/ml,以及 RyR3(两个结合位点)的 44.9 ± 2.8 μg/ml 和 501.6 ± 9.2 μg/ml。在脂质双层测定中,F13 剂量依赖性地降低 RyR1、RyR2 和 RyR3 的开放概率。用 F13 预处理分化的小鼠骨骼肌肌管 (C2C12 细胞) 可使 RyR1、RyR2 和 RyR3 的 Ryanodine 和 K(+) 诱导的 Ca(2+) 瞬变幅度减小。由于 RyRs 存在于许多细胞类型中,因此通过这些通道从内部储存库动员 Ca(2+) 的能力受损可能是 HBD 触发这些看似无关的病理生理学的一种机制。