Guedes Gilvan Ramalho, Siviero Pamila Cristina Lima, Caetano André Junqueira, Machado Carla Jorge, Brondízio Eduardo
Doutor em Demografia, professor adjunto da Pós-Graduação em Gestão Integrada do Território/Univale, cientista colaborador do Environmental Change Initiative/Brown University; cientista colaborador do Anthropological Center for Training on Global Environmental Change/Indiana University.
Rev Bras Estud Popul. 2011 Aug;28(2):337-347. doi: 10.1590/s0102-30982011000200006.
The availability of increasingly complex and multidimensional datasets is one of the main causes for the increase in studies employing multivariate analyses based on fuzzy sets. Even though the Grade of Membership method has been widely used in Brazil for empirical studies in health and social sciences, issues regarding identifiability and stability of the final parameters estimated by GoM 3.4 software have not been thoroughly examined. Given the relevance of unique and stable parameters, Guedes et al. (2010) proposed an empirical method to locate a global maximum (GM) with stable parameters. However, the GM locator does not incorporate variability. In the present article, this limitation is circumvented by employing a weighted statistic - weight global maximum (WGM) - similar to the variation coefficient. This indicator does not affect disproportionately situations with very low mean deviations. The WGM locator is shown to decrease the distance of the identified model from the real structure, when compared with the GM locator.
越来越复杂和多维度数据集的可得性是采用基于模糊集的多变量分析的研究增加的主要原因之一。尽管隶属度方法在巴西已广泛用于健康和社会科学的实证研究,但关于GoM 3.4软件估计的最终参数的可识别性和稳定性问题尚未得到彻底研究。鉴于独特且稳定参数的相关性,Guedes等人(2010年)提出了一种实证方法来定位具有稳定参数的全局最大值(GM)。然而,GM定位器没有纳入变异性。在本文中,通过采用类似于变异系数的加权统计量——加权全局最大值(WGM)来规避这一限制。与GM定位器相比,该指标不会对平均偏差非常低的情况产生不成比例的影响。结果表明,与GM定位器相比,WGM定位器能减小所识别模型与真实结构之间的距离。