Suppr超能文献

运动子序列:运动的词典。

Movelets: A dictionary of movement.

作者信息

Bai Jiawei, Goldsmith Jeff, Caffo Brian, Glass Thomas A, Crainiceanu Ciprian M

机构信息

Department of Biostatistics, Johns Hopkins University 615 N. Wolfe St. Baltimore, MD 21205. USA

出版信息

Electron J Stat. 2012;6:559-578. doi: 10.1214/12-EJS684.

Abstract

Recent technological advances provide researchers with a way of gathering real-time information on an individual's movement through the use of wearable devices that record acceleration. In this paper, we propose a method for identifying activity types, like walking, standing, and resting, from acceleration data. Our approach decomposes movements into short components called "movelets", and builds a reference for each activity type. Unknown activities are predicted by matching new movelets to the reference. We apply our method to data collected from a single, three-axis accelerometer and focus on activities of interest in studying physical function in elderly populations. An important technical advantage of our methods is that they allow identification of short activities, such as taking two or three steps and then stopping, as well as low frequency rare(compared with the whole time series) activities, such as sitting on a chair. Based on our results we provide simple and actionable recommendations for the design and implementation of large epidemiological studies that could collect accelerometry data for the purpose of predicting the time series of activities and connecting it to health outcomes.

摘要

最近的技术进步为研究人员提供了一种通过使用记录加速度的可穿戴设备来收集个人运动实时信息的方法。在本文中,我们提出了一种从加速度数据中识别活动类型(如行走、站立和休息)的方法。我们的方法将运动分解为称为“运动子”的短组件,并为每种活动类型建立一个参考。通过将新的运动子与参考进行匹配来预测未知活动。我们将我们的方法应用于从单个三轴加速度计收集的数据,并专注于研究老年人群体身体功能时感兴趣的活动。我们方法的一个重要技术优势是,它们允许识别短活动,例如走两三步然后停下,以及低频罕见(与整个时间序列相比)活动,例如坐在椅子上。基于我们的结果,我们为大型流行病学研究的设计和实施提供了简单且可行的建议,这些研究可以收集加速度计数据以预测活动时间序列并将其与健康结果联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5aa/3535448/7b0ef9f732b5/nihms-426150-f0001.jpg

相似文献

1
Movelets: A dictionary of movement.运动子序列:运动的词典。
Electron J Stat. 2012;6:559-578. doi: 10.1214/12-EJS684.
3
Movement prediction using accelerometers in a human population.利用加速度计对人群进行运动预测。
Biometrics. 2016 Jun;72(2):513-24. doi: 10.1111/biom.12382. Epub 2015 Aug 19.
9
Detection of physical activity types using triaxial accelerometers.使用三轴加速度计检测身体活动类型。
J Phys Act Health. 2014 Jan;11(1):76-84. doi: 10.1123/jpah.2011-0347. Epub 2012 Dec 17.

引用本文的文献

5
Accelerometry data in health research: challenges and opportunities.健康研究中的加速度计数据:挑战与机遇
Stat Biosci. 2019 Jul;11(2):210-237. doi: 10.1007/s12561-018-9227-2. Epub 2019 Jan 12.
7
A practical guide to big data.大数据实用指南。
Stat Probab Lett. 2018 May;136:25-29. doi: 10.1016/j.spl.2018.02.014. Epub 2018 Mar 1.
9
Automatic car driving detection using raw accelerometry data.使用原始加速度计数据进行自动汽车驾驶检测。
Physiol Meas. 2016 Oct;37(10):1757-1769. doi: 10.1088/0967-3334/37/10/1757. Epub 2016 Sep 21.

本文引用的文献

1
Validation of wearable monitors for assessing sedentary behavior.可穿戴监测器评估久坐行为的验证。
Med Sci Sports Exerc. 2011 Aug;43(8):1561-7. doi: 10.1249/MSS.0b013e31820ce174.
6
Physical activity in the United States measured by accelerometer.在美国,通过加速度计测量身体活动。
Med Sci Sports Exerc. 2008 Jan;40(1):181-8. doi: 10.1249/mss.0b013e31815a51b3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验