Suppr超能文献

使用原始加速度计数据区分行走和爬楼梯

Differentiating Between Walking and Stair Climbing Using Raw Accelerometry Data.

作者信息

Fadel William F, Urbanek Jacek K, Albertson Steven R, Li Xiaochun, Chomistek Andrea K, Harezlak Jaroslaw

机构信息

410 West 10th Street, Suite 3000, Indianapolis, IN 46202, Department of Biostatistics, School of Medicine & Richard M. Fairbanks School of Public Health, Indiana University.

2024 E. Monument Street, Suite 2-700, Baltimore, MD 21205, Division of Geriatric Medicine and Gerontology, Department of Medicine, School of Medicine, Johns Hopkins University.

出版信息

Stat Biosci. 2019;11(2):334-354. doi: 10.1007/s12561-019-09241-7. Epub 2019 May 10.

Abstract

Wearable accelerometers provide an objective measure of human physical activity. They record high frequency unlabeled three-dimensional time series data. We extract meaningful features from the raw accelerometry data and based on them develop and evaluate a classification method for the detection of walking and its sub-classes, i.e. level walking, descending stairs and ascending stairs. Our methodology is tested on a sample of 32 middle-aged subjects for whom we extracted features based on the Fourier and wavelet transforms. We build subject-specific and group-level classification models utilizing a tree-based methodology. We evaluate the effects of sensor location and tuning parameters on the classification accuracy of the tree models. In the group-level classification setting, we propose a robust feature inter-subject normalization and evaluate its performance compared to unnormalized data. The overall classification accuracy for the three activities at the subject-specific level was on average 87.6%, with the ankle-worn accelerometers showing the best performance with an average accuracy 90.5%. At the group-level, the average overall classification accuracy for the three activities using the normalized features was 80.2% compared to 72.3% for the unnormalized features. In summary, a framework is provided for better use and feature extraction from raw accelerometry data to differentiate among different walking modalities as well as considerations for study design.

摘要

可穿戴式加速度计可提供人体身体活动的客观测量值。它们记录高频未标记的三维时间序列数据。我们从原始加速度计数据中提取有意义的特征,并在此基础上开发和评估一种用于检测行走及其子类(即平路行走、下楼梯和上楼梯)的分类方法。我们的方法在32名中年受试者的样本上进行了测试,我们基于傅里叶变换和小波变换为他们提取了特征。我们使用基于树的方法构建特定于受试者的和组级分类模型。我们评估传感器位置和调优参数对树模型分类准确性的影响。在组级分类设置中,我们提出了一种稳健的受试者间特征归一化方法,并与未归一化数据相比评估其性能。在特定于受试者的水平上,三种活动的总体分类准确率平均为87.6%,脚踝佩戴的加速度计表现最佳,平均准确率为90.5%。在组级,使用归一化特征的三种活动的平均总体分类准确率为80.2%,而未归一化特征的平均准确率为72.3%。总之,本文提供了一个框架,以便更好地利用原始加速度计数据并从中提取特征,以区分不同的行走方式,同时也为研究设计提供了相关考量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc8/7453603/42c92215d074/nihms-1529153-f0001.jpg

相似文献

6
Activity classification in persons with stroke based on frequency features.基于频率特征的中风患者活动分类
Med Eng Phys. 2015 Feb;37(2):180-6. doi: 10.1016/j.medengphy.2014.11.008. Epub 2015 Jan 2.

本文引用的文献

2
Automatic car driving detection using raw accelerometry data.使用原始加速度计数据进行自动汽车驾驶检测。
Physiol Meas. 2016 Oct;37(10):1757-1769. doi: 10.1088/0967-3334/37/10/1757. Epub 2016 Sep 21.
4
Movement prediction using accelerometers in a human population.利用加速度计对人群进行运动预测。
Biometrics. 2016 Jun;72(2):513-24. doi: 10.1111/biom.12382. Epub 2015 Aug 19.
6
Window size impact in human activity recognition.窗口大小对人类活动识别的影响。
Sensors (Basel). 2014 Apr 9;14(4):6474-99. doi: 10.3390/s140406474.
8
Movelets: A dictionary of movement.运动子序列:运动的词典。
Electron J Stat. 2012;6:559-578. doi: 10.1214/12-EJS684.
10
Validation of the GENEA Accelerometer.GENEA 加速度计的验证。
Med Sci Sports Exerc. 2011 Jun;43(6):1085-93. doi: 10.1249/MSS.0b013e31820513be.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验