Suppr超能文献

检测沿环境梯度的选择:八种方法及其对杂交和自交群体的有效性分析。

Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations.

机构信息

Institut de Recherche pour le Développement, UMR Diversité, Adaptation et Développement des Plantes (DIADE), Montpellier, France.

出版信息

Mol Ecol. 2013 Mar;22(5):1383-99. doi: 10.1111/mec.12182. Epub 2013 Jan 7.

Abstract

Thanks to genome-scale diversity data, present-day studies can provide a detailed view of how natural and cultivated species adapt to their environment and particularly to environmental gradients. However, due to their sensitivity, up-to-date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime. In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection. We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self-fertilization. We investigated the power and robustness of eight methods to detect loci potentially under selection: three designed to detect genotype-environment correlations and five designed to detect adaptive differentiation (based on F(ST) or similar measures). We show that genotype-environment correlation methods have substantially more power to detect selection than differentiation-based methods but that they generally suffer from high rates of false positives. This effect is exacerbated whenever allele frequencies are correlated, either between populations or within populations. Our results suggest that, when the underlying genetic structure of the data is unknown, a number of robust methods are preferable. Moreover, in the simulated scenario we used, sampling many populations led to better results than sampling many individuals per population. Finally, care should be taken when using methods to identify genotype-environment correlations without correcting for allele frequency autocorrelation because of the risk of spurious signals due to allele frequency correlations between populations.

摘要

感谢全基因组多样性数据,现今的研究可以提供一个详细的视角,了解自然和栽培物种如何适应其环境,特别是环境梯度。然而,由于其敏感性,最新的研究可能对未记录的人口统计学效应(如迁移模式和繁殖制度)更为敏感。在这项研究中,我们提供了使用流行或最近开发的统计方法来检测选择痕迹的指南。我们沿着一个选择性梯度模拟了 100 个群体,并探索了不同的迁移模型、采样方案和自交率。我们调查了八种方法检测潜在选择的位点的能力和稳健性:三种方法用于检测基因型-环境相关性,五种方法用于检测适应性分化(基于 F(ST)或类似措施)。我们表明,基因型-环境相关性方法在检测选择方面具有更大的能力,但它们通常受到高假阳性率的影响。当等位基因频率在种群之间或种群内部相关时,这种效应会加剧。我们的结果表明,当数据的潜在遗传结构未知时,许多稳健的方法是可取的。此外,在我们使用的模拟场景中,对许多群体进行采样比对每个群体进行多个个体的采样能得到更好的结果。最后,在使用不校正等位基因频率自相关来识别基因型-环境相关性的方法时,应注意由于种群之间等位基因频率相关性而导致虚假信号的风险。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验