Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.
Nano Lett. 2013 Feb 13;13(2):392-6. doi: 10.1021/nl303535s. Epub 2013 Jan 14.
At the nanoscale, semiconductor and metallic structures naturally exhibit strong, tunable optical resonances that can be utilized to enhance light-matter interaction and to dramatically increase the performance of chipscale photonic elements. Here, we demonstrate that the metallic leads used to extract current from a Ge nanowire (NW) photodetector can be redesigned to serve as optical antennas capable of concentrating light in the NW. The NW itself can also be made optically resonant and an overall performance optimization involves a careful tuning of both resonances. We show that such a procedure can result in broadband absorption enhancements of up to a factor 1.7 at a target wavelength of 660 nm and an ability to control the detector's polarization-dependent response. The results of this study demonstrate the critical importance of performing a joint optimization of the electrical and optical properties of the metallic and semiconductor building blocks in optoelectronic devices with nanoscale components.
在纳米尺度上,半导体和金属结构自然表现出强的、可调谐的光学共振,可用于增强光物质相互作用,并显著提高芯片级光子元件的性能。在这里,我们证明了从锗纳米线(NW)光电探测器中提取电流的金属引线可以被重新设计成能够将光聚焦在 NW 中的光学天线。NW 本身也可以使光共振,并且整体性能优化涉及到对两个共振的仔细调谐。我们表明,这样的过程可以导致在目标波长为 660nm 时高达 1.7 倍的宽带吸收增强,并能够控制探测器的偏振相关响应。这项研究的结果表明,在具有纳米级组件的光电设备中,对金属和半导体构建块的电和光学性能进行联合优化具有至关重要的意义。