Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.
BMC Med Res Methodol. 2013 Jan 9;13:1. doi: 10.1186/1471-2288-13-1.
The two-stage time series design represents a powerful analytical tool in environmental epidemiology. Recently, models for both stages have been extended with the development of distributed lag non-linear models (DLNMs), a methodology for investigating simultaneously non-linear and lagged relationships, and multivariate meta-analysis, a methodology to pool estimates of multi-parameter associations. However, the application of both methods in two-stage analyses is prevented by the high-dimensional definition of DLNMs.
In this contribution we propose a method to synthesize DLNMs to simpler summaries, expressed by a reduced set of parameters of one-dimensional functions, which are compatible with current multivariate meta-analytical techniques. The methodology and modelling framework are implemented in R through the packages dlnm and mvmeta.
As an illustrative application, the method is adopted for the two-stage time series analysis of temperature-mortality associations using data from 10 regions in England and Wales. R code and data are available as supplementary online material.
The methodology proposed here extends the use of DLNMs in two-stage analyses, obtaining meta-analytical estimates of easily interpretable summaries from complex non-linear and delayed associations. The approach relaxes the assumptions and avoids simplifications required by simpler modelling approaches.
两阶段时间序列设计是环境流行病学中一种强大的分析工具。最近,随着分布式滞后非线性模型(DLNMs)的发展,两个阶段的模型都得到了扩展,DLNMs 是一种同时研究非线性和滞后关系的方法,多变量荟萃分析是一种用于汇集多参数关联估计的方法。然而,DLNMs 的高维定义阻止了这两种方法在两阶段分析中的应用。
本研究提出了一种将 DLNMs 综合为更简单的总结的方法,这些总结由一组一维函数的简化参数表示,与当前的多变量荟萃分析技术兼容。该方法和建模框架通过 dlnm 和 mvmeta 软件包在 R 中实现。
作为一个说明性的应用,该方法被用于使用来自英格兰和威尔士 10 个地区的数据进行温度与死亡率关联的两阶段时间序列分析。R 代码和数据可作为补充在线材料获得。
本文提出的方法扩展了 DLNMs 在两阶段分析中的应用,从复杂的非线性和延迟关联中获得了易于解释的摘要的荟萃分析估计。该方法放宽了假设并避免了更简单建模方法所需的简化。