Suppr超能文献

使用mgcv的计数数据灵活分布式滞后模型。

Flexible Distributed Lag Models for Count Data Using mgcv.

作者信息

Economou Theo, Parliari Daphne, Tobias Aurelio, Dawkins Laura, Steptoe Hamish, Sarran Christophe, Stoner Oliver, Lowe Rachel, Lelieveld Jos

机构信息

Department of Mathematics and Statistics, University of Exeter, Exeter, UK.

Climate and Atmosphere Research, The Cyprus Institute, Nicosia, Cyprus.

出版信息

Am Stat. 2025 Jul 3;79(3):371-382. doi: 10.1080/00031305.2025.2505514. eCollection 2025.

Abstract

In this tutorial we present the use of R package mgcv to implement Distributed Lag Non-Linear Models (DLNMs) in a flexible way. Interpretation of smoothing splines as random quantities enables approximate Bayesian inference, which in turn allows uncertainty quantification and comprehensive model checking. We illustrate various modeling situations using open-access epidemiological data in conjunction with simulation experiments. We demonstrate the inclusion of temporal structures and the use of mixture distributions to allow for extreme outliers. Moreover, we demonstrate interactions of the temporal lagged structures with other covariates with different lagged periods for different covariates. Spatial structures are also demonstrated, including smooth spatial variability and Markov random fields, in addition to hierarchical formulations to allow for non-structured dependency. Posterior predictive simulation is used to ensure models verify well against the data.

摘要

在本教程中,我们展示了如何使用R包mgcv以灵活的方式实现分布式滞后非线性模型(DLNMs)。将平滑样条解释为随机量可实现近似贝叶斯推断,进而能够进行不确定性量化和全面的模型检验。我们结合模拟实验,使用开放获取的流行病学数据来说明各种建模情况。我们展示了如何纳入时间结构以及使用混合分布来处理极端异常值。此外,我们还展示了时间滞后结构与其他协变量之间的相互作用,其中不同协变量具有不同的滞后周期。除了用于处理非结构化依赖的分层公式外,还展示了空间结构,包括平滑的空间变异性和马尔可夫随机场。后验预测模拟用于确保模型与数据拟合良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5070/12312768/6fb175108cd5/UTAS_A_2505514_F0001_C.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验