Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
Med Phys. 2013 Jan;40(1):011904. doi: 10.1118/1.4770283.
This study describes a HighlY constrained backPRojection (HYPR) image processing method for the reduction of image noise in low tube current time-resolved CT myocardial perfusion scans. The effect of this method on myocardial time-attenuation curve noise and fidelity is evaluated in an animal model, using varying levels of tube current.
CT perfusion scans of four healthy pigs (42-59 kg) were acquired at 500, 250, 100, 50, 25, and 10 mA on a 64-slice scanner (4 cm axial coverage, 120 kV, 0.4 s∕rotation, 50 s scan duration). For each scan a sequence of ECG-gated images centered on 75% R-R was reconstructed using short-scan filtered back projection (FBP). HYPR processing was applied to the scans acquired at less than 500 mA using parameters designed to maintain the voxel noise level in the 500-mA FBP images. The processing method generates a series of composite images by averaging over a sliding time window and then multiplies the composite images by weighting images to restore temporal fidelity to the image sequence. HYPR voxel noise relative to FBP noise was measured in AHA myocardial segment numbers 1, 5, 6, and 7 at each mA. To quantify the agreement between HYPR and FBP time-attenuation curves (TACs), Bland-Altman analysis was performed on TACs measured in full myocardial segments. The relative degree of TAC fluctuation in smaller subvolumes was quantified by calculating the root mean square deviation of a TAC about the gamma variate curve fit to the TAC data.
HYPR image sequences were produced using 2, 7, and 20 beat composite windows for the 250, 100, and 50 mA scans, respectively. At 25 and 10 mA, all available beats were used in the composite (41-60; average 50). A 7-voxel-wide 3D cubic filter kernel was used to form weighting images. The average ratio of HYPR voxel noise to 500-mA FBP voxel noise was 1.06, 1.10, 0.97, 1.11, and 2.15 for HYPR scans at 250, 100, 50, 25, and 10 mA. The average limits-of-agreement between HYPR and FBP TAC values measured 0.02+∕-0.91, 0.04+∕-1.92, 0.19+∕-1.59, 1.13+∕-4.22, and 1.07+∕-6.37 HU (mean difference +∕-1.96 SD). The HYPR image subvolume that yielded a fixed level of TAC fluctuations was smaller, on average, than the FBP subvolume determined at the same mA.
HYPR processing is a feasible method for generating low noise myocardial perfusion data from a low-mA time-resolved CT myocardial perfusion scan. The method is applicable to current clinical scanners and uses conventional image reconstructions as input data.
本研究描述了一种高强度约束后投影(HYPR)图像处理方法,用于降低低管电流时间分辨 CT 心肌灌注扫描中的图像噪声。该方法在动物模型中使用不同的管电流水平,评估了这种方法对心肌时间衰减曲线噪声和保真度的影响。
在一台 64 层扫描仪(4 厘米轴向覆盖,120 kV,0.4 秒/旋转,50 秒扫描持续时间)上,对 4 只健康猪(42-59 公斤)进行了 500、250、100、50、25 和 10 mA 的 CT 灌注扫描。对于每次扫描,使用短扫描滤波反投影(FBP)重建一个以 75%R-R 为中心的 ECG 门控图像序列。HYPR 处理应用于小于 500 mA 的扫描,使用旨在保持 500 mA FBP 图像中体素噪声水平的参数。该处理方法通过在滑动时间窗口上进行平均生成一系列复合图像,然后通过加权图像对复合图像进行乘法运算,以恢复图像序列的时间保真度。在每个 mA 处,在 AHA 心肌节段 1、5、6 和 7 中测量 HYPR 相对于 FBP 噪声的体素噪声。为了定量评估 HYPR 和 FBP 时间衰减曲线(TAC)之间的一致性,对整个心肌节段测量的 TAC 进行了 Bland-Altman 分析。通过计算 TAC 关于伽马变量曲线拟合的 TAC 数据的均方根偏差,量化较小子体积中 TAC 波动的相对程度。
分别使用 2、7 和 20 个心跳复合窗口生成了 250、100 和 50 mA 扫描的 HYPR 图像序列。在 25 和 10 mA 时,复合(41-60;平均 50)中使用了所有可用的心跳。使用 7 个像素宽的 3D 立方滤波核形成加权图像。HYPR 扫描的平均 HYPR 体素噪声与 500 mA FBP 体素噪声的比值分别为 1.06、1.10、0.97、1.11 和 2.15。HYPR 和 FBP TAC 值的平均一致性限为 0.02+∕-0.91、0.04+∕-1.92、0.19+∕-1.59、1.13+∕-4.22 和 1.07+∕-6.37 HU(平均差异+∕-1.96 SD)。在相同的 mA 下,产生固定 TAC 波动水平的 HYPR 图像子体积平均小于 FBP 子体积。
HYPR 处理是一种从低管电流时间分辨 CT 心肌灌注扫描中生成低噪声心肌灌注数据的可行方法。该方法适用于当前的临床扫描仪,并使用常规图像重建作为输入数据。