Zeng Dong, Gong Changfei, Bian Zhaoying, Huang Jing, Zhang Xinyu, Zhang Hua, Lu Lijun, Niu Shanzhou, Zhang Zhang, Liang Zhengrong, Feng Qianjin, Chen Wufan, Ma Jianhua
Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, People's Republic of China. Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China.
Phys Med Biol. 2016 Nov 21;61(22):8135-8156. doi: 10.1088/0031-9155/61/22/8135. Epub 2016 Oct 26.
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed 'MPD-AwTTV'. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.
动态心肌灌注计算机断层扫描(MPCT)是一种用于冠状动脉疾病快速诊断和风险分层的很有前景的技术。然而,动态MPCT成像的一个主要缺点是由于其动态图像采集协议,患者会受到较高的辐射剂量。在这项工作中,为了解决这个问题,我们提出了一种稳健的动态MPCT反卷积算法,即通过自适应加权张量全变差(AwTTV)正则化,用于在低毫安秒数据采集中准确估计残留函数。为简单起见,所提出的方法被称为“MPD-AwTTV”。更具体地说,AwTTV正则化相对于原始张量全变差正则化的优势来自于连续MPCT图像的各向异性边缘特性。为了最小化关联目标函数,我们在迭代收缩/阈值算法框架内提出了一种收敛速度快的高效迭代优化策略。我们使用数字XCAT体模和临床前猪数据对所提出的算法进行了验证和评估。初步实验结果表明,与数字体模研究中的其他现有反卷积算法相比,所提出的MPD-AwTTV反卷积算法在噪声诱导伪影抑制、边缘细节保留以及准确的血流缩放残留函数和MPHM估计方面可以取得显著进展,并且在猪数据实验中也可以获得类似的进展。