Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, UK.
Neuroimage. 2013 Apr 15;70:377-85. doi: 10.1016/j.neuroimage.2012.12.058. Epub 2013 Jan 5.
Diffusion tensor imaging (DTI) provides information about the microstructure in the brain and spinal cord. While new neuroimaging techniques have significantly advanced the accuracy and sensitivity of DTI of the brain, the quality of spinal cord DTI data has improved less. This is in part due to the small size of the spinal cord (ca. 1cm diameter) and more severe instrumental (e.g. eddy current) and physiological (e.g. cardiac pulsation) artefacts present in spinal cord DTI. So far, the improvements in image quality and resolution have resulted from cardiac gating and new acquisition approaches (e.g. reduced field-of-view techniques). The use of retrospective correction methods is not well established for spinal cord DTI. The aim of this paper is to develop an improved post-processing pipeline tailored for DTI data of the spinal cord with increased quality. For this purpose, we compared two eddy current and motion correction approaches using three-dimensional affine (3D-affine) and slice-wise registrations. We also introduced a new robust-tensor-fitting method that controls for whole-volume outliers. Although in general 3D-affine registration improves data quality, occasionally it can lead to misregistrations and biassed tensor estimates. The proposed robust tensor fitting reduced misregistration-related bias and yielded more reliable tensor estimates. Overall, the combination of slice-wise motion correction, eddy current correction, and robust tensor fitting yielded the best results. It increased the contrast-to-noise ratio (CNR) in FA maps by about 30% and reduced intra-subject variation in fractional anisotropy (FA) maps by 18%. The higher quality of FA maps allows for a better distinction between grey and white matter without increasing scan time and is compatible with any multi-directional DTI acquisition scheme.
弥散张量成像(DTI)提供了关于脑和脊髓微观结构的信息。虽然新的神经影像学技术极大地提高了脑 DTI 的准确性和敏感性,但脊髓 DTI 数据的质量改善却较少。这部分是由于脊髓的体积较小(约 1cm 直径),并且在脊髓 DTI 中存在更严重的仪器(例如涡流)和生理(例如心脏搏动)伪影。到目前为止,图像质量和分辨率的提高是通过心脏门控和新的采集方法(例如缩小视野技术)实现的。对于脊髓 DTI,回顾性校正方法的使用尚未得到很好的建立。本文的目的是开发一种改进的后处理管道,专门用于提高质量的脊髓 DTI 数据。为此,我们比较了两种涡流和运动校正方法,使用三维仿射(3D-affine)和切片注册。我们还引入了一种新的稳健张量拟合方法,该方法可以控制整个体积的异常值。尽管一般来说,3D-affine 配准可以提高数据质量,但有时它可能会导致配准错误和偏倚张量估计。所提出的稳健张量拟合减少了与配准相关的偏差,并产生了更可靠的张量估计。总体而言,切片运动校正、涡流校正和稳健张量拟合的组合产生了最佳结果。它使 FA 图中的对比噪声比(CNR)提高了约 30%,并使各向异性分数(FA)图中的个体内变异性降低了 18%。更高质量的 FA 图允许在不增加扫描时间的情况下更好地区分灰质和白质,并且与任何多方向 DTI 采集方案兼容。