Department of Materials Science and Engineering, Hongik University, Seoul 121-791, Korea.
Nanotechnology. 2013 Feb 1;24(4):045607. doi: 10.1088/0957-4484/24/4/045607. Epub 2013 Jan 8.
We report on the synthesis of highly fluorescent double-ZnS-shell-capped, yellow-emitting Cu-In-S quantum dots (QDs) with a surprisingly high quantum yield of 92%, the preparation of a free-standing QD-polymethylmethacrylate composite plate, and the application of the QD plate in the fabrication of QD-based white-light-emitting diodes (WLEDs). A free-standing QD plate with QDs embedded uniformly inside a polymeric matrix is used to fabricate a remote-type, resin-free WLED. The QD plate-based WLED displays a high luminous efficiency; however, it suffers from a significantly unstable device performance due to QD degradation upon prolonged photo-excitation. An exceptional operational stability of the QD plate-based WLED is realized by generating hybrid double layers of an organic adhesion layer and a gas barrier layer of sol-gel-derived silica, rendering the QD plate impermeable to oxygen. Our success in achieving a color converter robust against photo-degradation and applying it in the fabrication of a reliable QD-based LED is greatly encouraging as regards the development of next-generation QD-based LED lighting sources.
我们报告了一种高度荧光的双 ZnS 壳覆盖的黄色发射 Cu-In-S 量子点 (QD) 的合成,其量子产率高达 92%,制备了一种独立的 QD-聚甲基丙烯酸甲酯复合板,并将 QD 板应用于基于 QD 的白光发光二极管 (WLED) 的制造。一种具有均匀嵌入聚合物基质中的 QD 的独立 QD 板用于制造远程型、无树脂的 WLED。基于 QD 板的 WLED 显示出高的发光效率;然而,由于长时间光激发导致 QD 降解,其器件性能显著不稳定。通过生成有机粘附层和溶胶-凝胶衍生的二氧化硅的气体阻挡层的混合双层,实现了 QD 板对氧气的不可渗透性,从而实现了基于 QD 板的 WLED 的卓越的工作稳定性。我们成功地实现了对光降解具有抗性的色转换,并将其应用于制造可靠的基于 QD 的 LED,这对于开发下一代基于 QD 的 LED 照明光源是一个极大的鼓舞。