Suppr超能文献

重编程 microRNA 转录组介导雷帕霉素耐药性。

Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.

机构信息

Department of Physiology and Cellular Biophysics, the Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, New York 10032, USA.

出版信息

J Biol Chem. 2013 Mar 1;288(9):6034-44. doi: 10.1074/jbc.M112.416446. Epub 2013 Jan 8.

Abstract

The mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation that is often deregulated in cancer. Inhibitors of mTOR, including rapamycin and its analogues, are being evaluated as antitumor agents. For their promise to be fulfilled, it is of paramount importance to identify the mechanisms of resistance and develop novel therapies to overcome it. Given the emerging role of microRNAs (miRNAs) in tumorigenesis, we hypothesized that miRNAs could play important roles in the response of tumors to mTOR inhibitors. Long-term rapamycin treatment showed extensive reprogramming of miRNA expression, characterized by up-regulation of miR-17-92 and related clusters and down-regulation of tumor suppressor miRNAs. Inhibition of members of the miR-17-92 clusters or delivery of tumor suppressor miRNAs restored sensitivity to rapamycin. This study identifies miRNAs as new downstream components of the mTOR-signaling pathway, which may determine the response of tumors to mTOR inhibitors. It also identifies potential markers to assess the efficacy of treatment and provides novel therapeutic targets to treat rapamycin-resistant tumors.

摘要

哺乳动物雷帕霉素靶蛋白(mTOR)是细胞增殖的中央调节因子,在癌症中经常失调。mTOR 的抑制剂,包括雷帕霉素及其类似物,正在被评估为抗肿瘤药物。为了实现它们的承诺,识别耐药机制并开发新的治疗方法来克服耐药性至关重要。鉴于 microRNAs(miRNAs)在肿瘤发生中的作用不断增强,我们假设 miRNAs 可能在肿瘤对 mTOR 抑制剂的反应中发挥重要作用。长期雷帕霉素治疗显示 miRNA 表达的广泛重编程,特征是 miR-17-92 和相关簇的上调和肿瘤抑制 miRNA 的下调。抑制 miR-17-92 簇的成员或递送肿瘤抑制 miRNA 可恢复对雷帕霉素的敏感性。这项研究确定了 miRNAs 作为 mTOR 信号通路的新下游成分,这可能决定了肿瘤对 mTOR 抑制剂的反应。它还确定了潜在的标志物来评估治疗效果,并提供了新的治疗靶点来治疗雷帕霉素耐药的肿瘤。

相似文献

1
Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.
J Biol Chem. 2013 Mar 1;288(9):6034-44. doi: 10.1074/jbc.M112.416446. Epub 2013 Jan 8.
2
mTOR-dependent regulation of PHLPP expression controls the rapamycin sensitivity in cancer cells.
J Biol Chem. 2011 Feb 25;286(8):6510-20. doi: 10.1074/jbc.M110.183087. Epub 2010 Dec 22.
3
Akt inhibitors MK-2206 and nelfinavir overcome mTOR inhibitor resistance in diffuse large B-cell lymphoma.
Clin Cancer Res. 2012 May 1;18(9):2534-44. doi: 10.1158/1078-0432.CCR-11-1407. Epub 2012 Feb 14.
6
Expression of the miR-150 tumor suppressor is restored by and synergizes with rapamycin in a human leukemia T-cell line.
Leuk Res. 2018 Nov;74:1-9. doi: 10.1016/j.leukres.2018.09.009. Epub 2018 Sep 22.
7
Rapamycin resistance is linked to defective regulation of Skp2.
Cancer Res. 2012 Apr 1;72(7):1836-43. doi: 10.1158/0008-5472.CAN-11-2195. Epub 2012 Feb 6.
9
Growth inhibitory effect of rapamycin in Hodgkin-lymphoma cell lines characterized by constitutive NOTCH1 activation.
Tumour Biol. 2016 Oct;37(10):13695-13704. doi: 10.1007/s13277-016-5272-y. Epub 2016 Jul 29.
10
A molecular cascade modulates MAP1B and confers resistance to mTOR inhibition in human glioblastoma.
Neuro Oncol. 2018 May 18;20(6):764-775. doi: 10.1093/neuonc/nox215.

引用本文的文献

1
Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system.
Neurobiol Pain. 2023 Jan 24;13:100119. doi: 10.1016/j.ynpai.2023.100119. eCollection 2023 Jan-Jul.
6
MicroRNAs in Tumor Cell Metabolism: Roles and Therapeutic Opportunities.
Front Oncol. 2019 Dec 11;9:1404. doi: 10.3389/fonc.2019.01404. eCollection 2019.
7
mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer.
Front Oncol. 2019 Dec 13;9:1373. doi: 10.3389/fonc.2019.01373. eCollection 2019.
8
Nucleotide Modification Alters MicroRNA-Dependent Silencing of MicroRNA Switches.
Mol Ther Nucleic Acids. 2019 Mar 1;14:339-350. doi: 10.1016/j.omtn.2018.12.007. Epub 2018 Dec 18.
10
Decreased LIN28B in preeclampsia impairs human trophoblast differentiation and migration.
FASEB J. 2019 Feb;33(2):2759-2769. doi: 10.1096/fj.201801163R. Epub 2018 Oct 11.

本文引用的文献

1
Rapamycin resistance is linked to defective regulation of Skp2.
Cancer Res. 2012 Apr 1;72(7):1836-43. doi: 10.1158/0008-5472.CAN-11-2195. Epub 2012 Feb 6.
2
MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells.
J Biol Chem. 2012 Jan 6;287(2):1527-37. doi: 10.1074/jbc.M111.278705. Epub 2011 Nov 28.
3
PI3K/AKT signaling determines a dynamic switch between distinct KSRP functions favoring skeletal myogenesis.
Cell Death Differ. 2012 Mar;19(3):478-87. doi: 10.1038/cdd.2011.117. Epub 2011 Sep 2.
4
Cooperative control of tumor suppressor genes by a network of oncogenic microRNAs.
Cell Cycle. 2011 Sep 1;10(17):2845-9. doi: 10.4161/cc.10.17.16959.
5
The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma.
Mol Cell. 2010 Dec 10;40(5):762-73. doi: 10.1016/j.molcel.2010.11.038.
7
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.
Cell. 2010 Apr 2;141(1):129-41. doi: 10.1016/j.cell.2010.03.009.
8
miR-19 is a key oncogenic component of mir-17-92.
Genes Dev. 2009 Dec 15;23(24):2839-49. doi: 10.1101/gad.1861409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验