Suppr超能文献

简单/复杂分类的稳定性与猕猴 V1 中的对比和超类经典感受野调制。

Stability of simple/complex classification with contrast and extraclassical receptive field modulation in macaque V1.

机构信息

Center for Neural Science, New York Univ., New York, NY 10003, USA.

出版信息

J Neurophysiol. 2013 Apr;109(7):1793-803. doi: 10.1152/jn.00997.2012. Epub 2013 Jan 9.

Abstract

A key property of neurons in primary visual cortex (V1) is the distinction between simple and complex cells. Recent reports in cat visual cortex indicate the categorization of simple and complex can change depending on stimulus conditions. We investigated the stability of the simple/complex classification with changes in drive produced by either contrast or modulation by the extraclassical receptive field (eCRF). These two conditions were reported to increase the proportion of simple cells in cat cortex. The ratio of the modulation depth of the response (F1) to the elevation of response (F0) to a drifting grating (F1/F0 ratio) was used as the measure of simple/complex. The majority of V1 complex cells remained classified as complex with decreasing contrast. Near contrast threshold, an equal proportion of simple and complex cells changed their classification. The F1/F0 ratio was stable between optimal and large stimulus areas even for those neurons that showed strong eCRF suppression. There was no discernible overall effect of surrounding spatial context on the F1/F0 ratio. Simple/complex cell classification is relatively stable across a range of stimulus drives, produced by either contrast or eCRF suppression.

摘要

初级视皮层(V1)神经元的一个关键特性是简单细胞和复杂细胞的区分。最近在猫的视觉皮层的报告表明,简单和复杂的分类可以根据刺激条件而改变。我们研究了在由对比或外类感受野(eCRF)调制引起的驱动力变化下,简单/复杂分类的稳定性。据报道,这两种情况会增加猫皮层中简单细胞的比例。响应调制深度(F1)与响应升高(F0)之比(F1/F0 比)被用作简单/复杂的度量。随着对比度的降低,大多数 V1 复杂细胞仍被归类为复杂细胞。在接近对比度阈值的情况下,相等比例的简单和复杂细胞改变了它们的分类。即使对于那些表现出强烈 eCRF 抑制的神经元,F1/F0 比在最优和大刺激区域之间也是稳定的。周围空间上下文对 F1/F0 比没有明显的整体影响。简单/复杂细胞分类在由对比度或 eCRF 抑制产生的一系列刺激驱动力下相对稳定。

相似文献

1
Stability of simple/complex classification with contrast and extraclassical receptive field modulation in macaque V1.
J Neurophysiol. 2013 Apr;109(7):1793-803. doi: 10.1152/jn.00997.2012. Epub 2013 Jan 9.
3
Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
Neuroscience. 2007 Nov 23;149(4):962-75. doi: 10.1016/j.neuroscience.2007.08.001. Epub 2007 Aug 9.
4
Surround suppression supports second-order feature encoding by macaque V1 and V2 neurons.
Vision Res. 2014 Nov;104:24-35. doi: 10.1016/j.visres.2014.10.004. Epub 2014 Oct 23.
6
'Simplification' of responses of complex cells in cat striate cortex: suppressive surrounds and 'feedback' inactivation.
J Physiol. 2006 Aug 1;574(Pt 3):731-50. doi: 10.1113/jphysiol.2006.110320. Epub 2006 May 18.
8
Spatiotemporal characteristics of surround suppression in primary visual cortex and lateral geniculate nucleus of the cat.
J Neurophysiol. 2014 Aug 1;112(3):603-19. doi: 10.1152/jn.00221.2012. Epub 2014 May 14.

引用本文的文献

1
How Stimulus Statistics Affect the Receptive Fields of Cells in Primary Visual Cortex.
J Neurosci. 2022 Jun 29;42(26):5198-5211. doi: 10.1523/JNEUROSCI.0664-21.2022. Epub 2022 May 24.
2
Functional Clusters of Neurons in Layer 6 of Macaque V1.
J Neurosci. 2020 Mar 18;40(12):2445-2457. doi: 10.1523/JNEUROSCI.1394-19.2020. Epub 2020 Feb 10.
3
Comparison of contrast-dependent phase sensitivity in primary visual cortex of mouse, cat and macaque.
Neuroreport. 2019 Oct 9;30(14):960-965. doi: 10.1097/WNR.0000000000001307.
4
Synaptic Basis for Contrast-Dependent Shifts in Functional Identity in Mouse V1.
eNeuro. 2019 Apr 9;6(2). doi: 10.1523/ENEURO.0480-18.2019. eCollection 2019 Mar-Apr.
5
The divisive normalization model of V1 neurons: a comprehensive comparison of physiological data and model predictions.
J Neurophysiol. 2017 Dec 1;118(6):3051-3091. doi: 10.1152/jn.00821.2016. Epub 2017 Aug 23.
6
Spatial phase sensitivity of complex cells in primary visual cortex depends on stimulus contrast.
J Neurophysiol. 2015 Dec;114(6):3326-38. doi: 10.1152/jn.00431.2015. Epub 2015 Sep 16.
7
Spatiotemporal specificity of contrast adaptation in mouse primary visual cortex.
Front Neural Circuits. 2013 Oct 3;7:154. doi: 10.3389/fncir.2013.00154. eCollection 2013.

本文引用的文献

1
Effects of contrast and contrast adaptation on static receptive field features in macaque area V1.
J Neurophysiol. 2012 Oct;108(7):2033-50. doi: 10.1152/jn.00936.2011. Epub 2012 Jul 18.
2
Complex cell receptive fields: evidence for a hierarchical mechanism.
J Physiol. 2010 Sep 15;588(Pt 18):3457-70. doi: 10.1113/jphysiol.2010.191452. Epub 2010 Jul 26.
4
The linearity and selectivity of neuronal responses in awake visual cortex.
J Vis. 2009 Aug 25;9(9):12.1-17. doi: 10.1167/9.9.12.
5
Stimulus ensemble and cortical layer determine V1 spatial receptive fields.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14652-7. doi: 10.1073/pnas.0907406106. Epub 2009 Aug 17.
6
Contextual modulation of V1 receptive fields depends on their spatial symmetry.
J Comput Neurosci. 2009 Apr;26(2):203-18. doi: 10.1007/s10827-008-0107-5. Epub 2008 Aug 5.
7
A neuronal network model of primary visual cortex explains spatial frequency selectivity.
J Comput Neurosci. 2009 Apr;26(2):271-87. doi: 10.1007/s10827-008-0110-x. Epub 2008 Jul 31.
8
Complex cells increase their phase sensitivity at low contrasts and following adaptation.
J Neurophysiol. 2007 Sep;98(3):1155-66. doi: 10.1152/jn.00433.2007. Epub 2007 May 30.
9
A dynamic nonlinearity and spatial phase specificity in macaque V1 neurons.
J Neurosci. 2007 May 23;27(21):5706-18. doi: 10.1523/JNEUROSCI.4743-06.2007.
10
'Simplification' of responses of complex cells in cat striate cortex: suppressive surrounds and 'feedback' inactivation.
J Physiol. 2006 Aug 1;574(Pt 3):731-50. doi: 10.1113/jphysiol.2006.110320. Epub 2006 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验