National Vision Research Institute, Carlton, Victoria 3053, Australia.
Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
J Neurosci. 2022 Jun 29;42(26):5198-5211. doi: 10.1523/JNEUROSCI.0664-21.2022. Epub 2022 May 24.
We studied the changes that neuronal receptive field (RF) models undergo when the statistics of the stimulus are changed from those of white Gaussian noise (WGN) to those of natural scenes (NSs), by fitting the models to multielectrode data recorded from primary visual cortex (V1) of female cats. This allowed the estimation of both a cascade of linear filters on the stimulus, as well as the static nonlinearities that map the output of the filters to the neuronal spike rates. We found that cells respond differently to these two classes of stimuli, with mostly higher spike rates and shorter response latencies to NSs than to WGN. The most striking finding was that NSs resulted in RFs that had additional uncovered filters compared with WGN. This finding was not an artifact of the higher spike rates observed for NSs relative to WGN, but rather was related to a change in coding. Our results reveal a greater extent of nonlinear processing in V1 neurons when stimulated using NSs compared with WGN. Our findings indicate the existence of nonlinear mechanisms that endow V1 neurons with context-dependent transmission of visual information. This study addresses a fundamental question about the concept of the receptive field (RF): does the encoding of information depend on the context or statistical regularities of the stimulus type? We applied state-of-the-art RF modeling techniques to data collected from multielectrode recordings from cat visual cortex in response to two statistically distinct stimulus types: white Gaussian noise and natural scenes. We find significant differences between the RFs that emerge from our data-driven modeling. Natural scenes result in far more complex RFs that combine multiple features in the visual input. Our findings reveal that different regimes or modes of operation are at work in visual cortical processing depending on the information present in the visual input. The complexity of V1 neural coding appears to be dependent on the complexity of the stimulus. We believe this new finding will have interesting implications for our understanding of the efficient transmission of information in sensory systems, which is an integral assumption of many computational theories (e.g., efficient and predictive coding of sensory processing in the brain).
我们通过将模型拟合到从雌性猫的初级视觉皮层 (V1) 记录的多电极数据中,研究了当刺激的统计信息从白高斯噪声 (WGN) 变为自然场景 (NS) 时,神经元感受野 (RF) 模型发生的变化。这使得能够估计刺激的线性滤波器级联,以及将滤波器的输出映射到神经元尖峰率的静态非线性。我们发现细胞对这两种类别的刺激反应不同,与 WGN 相比,NS 通常具有更高的尖峰率和更短的响应潜伏期。最引人注目的发现是,与 WGN 相比,NS 导致具有额外未覆盖滤波器的 RF。这一发现不是由于 NS 相对于 WGN 观察到的更高尖峰率而产生的伪影,而是与编码方式的变化有关。我们的结果表明,与使用 WGN 刺激相比,当使用 NS 刺激时,V1 神经元中的非线性处理程度更高。我们的发现表明存在非线性机制,使 V1 神经元能够对视觉信息进行上下文相关的传递。这项研究解决了关于感受野 (RF) 概念的一个基本问题:信息的编码是否取决于刺激类型的上下文或统计规律?我们将最先进的 RF 建模技术应用于从猫视觉皮层多电极记录中收集的数据,以响应两种在统计学上截然不同的刺激类型:白高斯噪声和自然场景。我们发现从我们的数据驱动建模中得出的 RF 之间存在显着差异。自然场景导致的 RF 要复杂得多,它将视觉输入中的多个特征组合在一起。我们的发现揭示了在视觉皮层处理中存在不同的工作模式或模式,这取决于视觉输入中存在的信息。V1 神经编码的复杂性似乎取决于刺激的复杂性。我们相信,这一新发现将对我们理解信息在感觉系统中的有效传输产生有趣的影响,这是许多计算理论的一个基本假设(例如,大脑中感觉处理的高效和预测编码)。