Suppr超能文献

初级视觉皮层(V1)神经元的归一化除法模型:生理数据与模型预测的全面比较

The divisive normalization model of V1 neurons: a comprehensive comparison of physiological data and model predictions.

作者信息

Sawada Tadamasa, Petrov Alexander A

机构信息

School of Psychology, National Research University Higher School of Economics, Moscow, Russia; and

Department of Psychology, Ohio State University, Columbus, Ohio.

出版信息

J Neurophysiol. 2017 Dec 1;118(6):3051-3091. doi: 10.1152/jn.00821.2016. Epub 2017 Aug 23.

Abstract

The physiological responses of simple and complex cells in the primary visual cortex (V1) have been studied extensively and modeled at different levels. At the functional level, the divisive normalization model (DNM; Heeger DJ. 9: 181-197, 1992) has accounted for a wide range of single-cell recordings in terms of a combination of linear filtering, nonlinear rectification, and divisive normalization. We propose standardizing the formulation of the DNM and implementing it in software that takes static grayscale images as inputs and produces firing rate responses as outputs. We also review a comprehensive suite of 30 empirical phenomena and report a series of simulation experiments that qualitatively replicate dozens of key experiments with a standard parameter set consistent with physiological measurements. This systematic approach identifies novel falsifiable predictions of the DNM. We show how the model simultaneously satisfies the conflicting desiderata of flexibility and falsifiability. Our key idea is that, while adjustable parameters are needed to accommodate the diversity across neurons, they must be fixed for a given individual neuron. This requirement introduces falsifiable constraints when this single neuron is probed with multiple stimuli. We also present mathematical analyses and simulation experiments that explicate some of these constraints.

摘要

初级视觉皮层(V1)中简单细胞和复杂细胞的生理反应已得到广泛研究,并在不同层面建立了模型。在功能层面,归一化除法模型(DNM;Heeger DJ. 9: 181 - 197, 1992)通过线性滤波、非线性整流和归一化除法的组合,解释了大量单细胞记录。我们建议对DNM的公式进行标准化,并在以静态灰度图像为输入、以发放率响应为输出的软件中实现它。我们还回顾了一套全面的30种实证现象,并报告了一系列模拟实验,这些实验用与生理测量一致的标准参数集定性地重复了数十个关键实验。这种系统方法确定了DNM的新的可证伪预测。我们展示了该模型如何同时满足灵活性和可证伪性这两个相互冲突的要求。我们的关键思想是,虽然需要可调参数来适应神经元之间的多样性,但对于给定的单个神经元,这些参数必须是固定的。当用多种刺激探测这个单个神经元时,这一要求引入了可证伪的约束。我们还给出了一些数学分析和模拟实验,阐明了其中一些约束。

相似文献

6
Determination of the fraction of active inputs required by a neuron to fire.确定神经元放电所需的活跃输入部分。
Biosystems. 2007 May-Jun;89(1-3):154-9. doi: 10.1016/j.biosystems.2006.05.017. Epub 2006 Nov 12.
8
Spatiotemporal elements of macaque v1 receptive fields.猕猴初级视皮层感受野的时空要素
Neuron. 2005 Jun 16;46(6):945-56. doi: 10.1016/j.neuron.2005.05.021.
9
Modeling the diverse effects of divisive normalization on noise correlations.对分歧归一化对噪声相关性的多种影响进行建模。
PLoS Comput Biol. 2023 Nov 30;19(11):e1011667. doi: 10.1371/journal.pcbi.1011667. eCollection 2023 Nov.

引用本文的文献

2
V1 neurons are tuned to perceptual borders in natural scenes.V1 神经元对自然场景中的感知边界进行调整。
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2221623121. doi: 10.1073/pnas.2221623121. Epub 2024 Nov 4.
3
Combined manifestation of two geometric visual illusions.两种几何视错觉的联合表现。
Atten Percept Psychophys. 2024 Oct;86(7):2456-2474. doi: 10.3758/s13414-024-02957-9. Epub 2024 Sep 20.
5
Modeling the diverse effects of divisive normalization on noise correlations.对分歧归一化对噪声相关性的多种影响进行建模。
PLoS Comput Biol. 2023 Nov 30;19(11):e1011667. doi: 10.1371/journal.pcbi.1011667. eCollection 2023 Nov.
6
A role for ocular dominance in binocular integration.眼优势在双眼整合中的作用。
Curr Biol. 2023 Sep 25;33(18):3884-3895.e5. doi: 10.1016/j.cub.2023.08.019. Epub 2023 Aug 31.
7
Effects of normalized summation in the visual illusion of extent.归一化求和对范围视错觉的影响。
Atten Percept Psychophys. 2023 Oct;85(7):2422-2436. doi: 10.3758/s13414-023-02744-y. Epub 2023 Jun 27.

本文引用的文献

2
Relating normalization to neuronal populations across cortical areas.将归一化与跨皮质区域的神经元群体联系起来。
J Neurophysiol. 2016 Sep 1;116(3):1375-86. doi: 10.1152/jn.00017.2016. Epub 2016 Jun 29.
3
The Elementary Operations of Human Vision Are Not Reducible to Template-Matching.人类视觉的基本操作不能简化为模板匹配。
PLoS Comput Biol. 2015 Nov 10;11(11):e1004499. doi: 10.1371/journal.pcbi.1004499. eCollection 2015 Nov.
4
Origin and Function of Tuning Diversity in Macaque Visual Cortex.猕猴视觉皮层中调谐多样性的起源与功能
Neuron. 2015 Nov 18;88(4):819-31. doi: 10.1016/j.neuron.2015.10.009. Epub 2015 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验