Suppr超能文献

使用国家质量论坛(NQF)质量数据模型和JBoss®Drools引擎对电子健康记录驱动的表型算法进行建模和执行。

Modeling and executing electronic health records driven phenotyping algorithms using the NQF Quality Data Model and JBoss® Drools Engine.

作者信息

Li Dingcheng, Endle Cory M, Murthy Sahana, Stancl Craig, Suesse Dale, Sottara Davide, Huff Stanley M, Chute Christopher G, Pathak Jyotishman

机构信息

Mayo Clinic, Rochester, MN, USA.

出版信息

AMIA Annu Symp Proc. 2012;2012:532-41. Epub 2012 Nov 3.

Abstract

With increasing adoption of electronic health records (EHRs), the need for formal representations for EHR-driven phenotyping algorithms has been recognized for some time. The recently proposed Quality Data Model from the National Quality Forum (NQF) provides an information model and a grammar that is intended to represent data collected during routine clinical care in EHRs as well as the basic logic required to represent the algorithmic criteria for phenotype definitions. The QDM is further aligned with Meaningful Use standards to ensure that the clinical data and algorithmic criteria are represented in a consistent, unambiguous and reproducible manner. However, phenotype definitions represented in QDM, while structured, cannot be executed readily on existing EHRs. Rather, human interpretation, and subsequent implementation is a required step for this process. To address this need, the current study investigates open-source JBoss® Drools rules engine for automatic translation of QDM criteria into rules for execution over EHR data. In particular, using Apache Foundation's Unstructured Information Management Architecture (UIMA) platform, we developed a translator tool for converting QDM defined phenotyping algorithm criteria into executable Drools rules scripts, and demonstrated their execution on real patient data from Mayo Clinic to identify cases for Coronary Artery Disease and Diabetes. To the best of our knowledge, this is the first study illustrating a framework and an approach for executing phenotyping criteria modeled in QDM using the Drools business rules management system.

摘要

随着电子健康记录(EHRs)的使用日益广泛,对EHR驱动的表型分析算法进行形式化表示的需求已被认识到一段时间了。美国国家质量论坛(NQF)最近提出的质量数据模型提供了一个信息模型和一种语法,旨在表示EHRs中常规临床护理期间收集的数据,以及表示表型定义算法标准所需的基本逻辑。QDM进一步与有意义使用标准保持一致,以确保临床数据和算法标准以一致、明确和可重复的方式表示。然而,QDM中表示的表型定义虽然是结构化的,但不能在现有的EHRs上轻松执行。相反,人工解释以及随后的实施是这个过程的必要步骤。为满足这一需求,本研究调查了开源的JBoss®Drools规则引擎,用于将QDM标准自动转换为针对EHR数据执行的规则。特别是,我们使用Apache基金会的非结构化信息管理架构(UIMA)平台,开发了一个翻译工具,用于将QDM定义的表型分析算法标准转换为可执行的Drools规则脚本,并在梅奥诊所的真实患者数据上演示了它们的执行情况,以识别冠状动脉疾病和糖尿病病例。据我们所知,这是第一项说明使用Drools业务规则管理系统执行QDM中建模的表型标准的框架和方法的研究。

相似文献

2
Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium.
J Am Med Inform Assoc. 2013 Dec;20(e2):e341-8. doi: 10.1136/amiajnl-2013-001939. Epub 2013 Nov 4.
5
Developing a data element repository to support EHR-driven phenotype algorithm authoring and execution.
J Biomed Inform. 2016 Aug;62:232-42. doi: 10.1016/j.jbi.2016.07.008. Epub 2016 Jul 5.
7
Large language models facilitate the generation of electronic health record phenotyping algorithms.
J Am Med Inform Assoc. 2024 Sep 1;31(9):1994-2001. doi: 10.1093/jamia/ocae072.
10
Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project.
J Biomed Inform. 2012 Aug;45(4):763-71. doi: 10.1016/j.jbi.2012.01.009. Epub 2012 Feb 4.

引用本文的文献

1
Design and validation of a FHIR-based EHR-driven phenotyping toolbox.
J Am Med Inform Assoc. 2022 Aug 16;29(9):1449-1460. doi: 10.1093/jamia/ocac063.
2
Algorithmic Detection of Boolean Logic Errors in Clinical Decision Support Statements.
Appl Clin Inform. 2021 Jan;12(1):182-189. doi: 10.1055/s-0041-1722918. Epub 2021 Mar 10.
3
Toward cross-platform electronic health record-driven phenotyping using Clinical Quality Language.
Learn Health Syst. 2020 Jun 25;4(4):e10233. doi: 10.1002/lrh2.10233. eCollection 2020 Oct.
4
Requirements and validation of a prototype learning health system for clinical diagnosis.
Learn Health Syst. 2017 May 31;1(4):e10026. doi: 10.1002/lrh2.10026. eCollection 2017 Oct.
6
Developing a modular architecture for creation of rule-based clinical diagnostic criteria.
BioData Min. 2016 Oct 21;9:33. doi: 10.1186/s13040-016-0113-5. eCollection 2016.
7
Clinical phenotyping in selected national networks: demonstrating the need for high-throughput, portable, and computational methods.
Artif Intell Med. 2016 Jul;71:57-61. doi: 10.1016/j.artmed.2016.05.005. Epub 2016 Jun 25.
8
A computational framework for converting textual clinical diagnostic criteria into the quality data model.
J Biomed Inform. 2016 Oct;63:11-21. doi: 10.1016/j.jbi.2016.07.016. Epub 2016 Jul 19.
9
Developing a data element repository to support EHR-driven phenotype algorithm authoring and execution.
J Biomed Inform. 2016 Aug;62:232-42. doi: 10.1016/j.jbi.2016.07.008. Epub 2016 Jul 5.

本文引用的文献

1
Logical Observation Identifiers Names and Codes for Laboratorians.
Arch Pathol Lab Med. 2020 Feb;144(2):229-239. doi: 10.5858/arpa.2018-0477-RA. Epub 2019 Jun 20.
2
Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project.
J Biomed Inform. 2012 Aug;45(4):763-71. doi: 10.1016/j.jbi.2012.01.009. Epub 2012 Feb 4.
3
An OWL meta-ontology for representing the Clinical Element Model.
AMIA Annu Symp Proc. 2011;2011:1372-81. Epub 2011 Oct 22.
6
Executing medical logic modules expressed in ArdenML using Drools.
J Am Med Inform Assoc. 2012 Jul-Aug;19(4):533-6. doi: 10.1136/amiajnl-2011-000512. Epub 2011 Dec 16.
7
A translational engine at the national scale: informatics for integrating biology and the bedside.
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):181-5. doi: 10.1136/amiajnl-2011-000492. Epub 2011 Nov 10.
8
Electronic medical records for genetic research: results of the eMERGE consortium.
Sci Transl Med. 2011 Apr 20;3(79):79re1. doi: 10.1126/scitranslmed.3001807.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验