Li Dingcheng, Endle Cory M, Murthy Sahana, Stancl Craig, Suesse Dale, Sottara Davide, Huff Stanley M, Chute Christopher G, Pathak Jyotishman
Mayo Clinic, Rochester, MN, USA.
AMIA Annu Symp Proc. 2012;2012:532-41. Epub 2012 Nov 3.
With increasing adoption of electronic health records (EHRs), the need for formal representations for EHR-driven phenotyping algorithms has been recognized for some time. The recently proposed Quality Data Model from the National Quality Forum (NQF) provides an information model and a grammar that is intended to represent data collected during routine clinical care in EHRs as well as the basic logic required to represent the algorithmic criteria for phenotype definitions. The QDM is further aligned with Meaningful Use standards to ensure that the clinical data and algorithmic criteria are represented in a consistent, unambiguous and reproducible manner. However, phenotype definitions represented in QDM, while structured, cannot be executed readily on existing EHRs. Rather, human interpretation, and subsequent implementation is a required step for this process. To address this need, the current study investigates open-source JBoss® Drools rules engine for automatic translation of QDM criteria into rules for execution over EHR data. In particular, using Apache Foundation's Unstructured Information Management Architecture (UIMA) platform, we developed a translator tool for converting QDM defined phenotyping algorithm criteria into executable Drools rules scripts, and demonstrated their execution on real patient data from Mayo Clinic to identify cases for Coronary Artery Disease and Diabetes. To the best of our knowledge, this is the first study illustrating a framework and an approach for executing phenotyping criteria modeled in QDM using the Drools business rules management system.
随着电子健康记录(EHRs)的使用日益广泛,对EHR驱动的表型分析算法进行形式化表示的需求已被认识到一段时间了。美国国家质量论坛(NQF)最近提出的质量数据模型提供了一个信息模型和一种语法,旨在表示EHRs中常规临床护理期间收集的数据,以及表示表型定义算法标准所需的基本逻辑。QDM进一步与有意义使用标准保持一致,以确保临床数据和算法标准以一致、明确和可重复的方式表示。然而,QDM中表示的表型定义虽然是结构化的,但不能在现有的EHRs上轻松执行。相反,人工解释以及随后的实施是这个过程的必要步骤。为满足这一需求,本研究调查了开源的JBoss®Drools规则引擎,用于将QDM标准自动转换为针对EHR数据执行的规则。特别是,我们使用Apache基金会的非结构化信息管理架构(UIMA)平台,开发了一个翻译工具,用于将QDM定义的表型分析算法标准转换为可执行的Drools规则脚本,并在梅奥诊所的真实患者数据上演示了它们的执行情况,以识别冠状动脉疾病和糖尿病病例。据我们所知,这是第一项说明使用Drools业务规则管理系统执行QDM中建模的表型标准的框架和方法的研究。