Suppr超能文献

电子病历用于基因研究:eMERGE 联盟的研究结果。

Electronic medical records for genetic research: results of the eMERGE consortium.

机构信息

Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

出版信息

Sci Transl Med. 2011 Apr 20;3(79):79re1. doi: 10.1126/scitranslmed.3001807.

Abstract

Clinical data in electronic medical records (EMRs) are a potential source of longitudinal clinical data for research. The Electronic Medical Records and Genomics Network (eMERGE) investigates whether data captured through routine clinical care using EMRs can identify disease phenotypes with sufficient positive and negative predictive values for use in genome-wide association studies (GWAS). Using data from five different sets of EMRs, we have identified five disease phenotypes with positive predictive values of 73 to 98% and negative predictive values of 98 to 100%. Most EMRs captured key information (diagnoses, medications, laboratory tests) used to define phenotypes in a structured format. We identified natural language processing as an important tool to improve case identification rates. Efforts and incentives to increase the implementation of interoperable EMRs will markedly improve the availability of clinical data for genomics research.

摘要

电子病历(EMR)中的临床数据是研究中纵向临床数据的潜在来源。电子病历与基因组学网络(eMERGE)研究了通过常规临床护理使用 EMR 捕获的数据是否可以识别具有足够阳性和阴性预测值的疾病表型,以便用于全基因组关联研究(GWAS)。我们使用来自五个不同 EMR 数据集的数据,已经确定了五个疾病表型,其阳性预测值为 73%至 98%,阴性预测值为 98%至 100%。大多数 EMR 以结构化格式捕获了用于定义表型的关键信息(诊断、药物、实验室检查)。我们确定自然语言处理是提高病例识别率的重要工具。增加互操作 EMR 实施的努力和激励措施将显著提高基因组学研究中临床数据的可用性。

相似文献

引用本文的文献

1
Development and Evaluation of a Computable Phenotype for Normal Tension Glaucoma.正常眼压性青光眼可计算表型的开发与评估
Ophthalmol Sci. 2025 Jun 18;5(6):100858. doi: 10.1016/j.xops.2025.100858. eCollection 2025 Nov-Dec.

本文引用的文献

6
The "meaningful use" regulation for electronic health records.电子健康记录的“有意义使用”规定。
N Engl J Med. 2010 Aug 5;363(6):501-4. doi: 10.1056/NEJMp1006114. Epub 2010 Jul 13.
10
Liberating health data for clinical research applications.释放健康数据,用于临床研究应用。
Sci Transl Med. 2010 Feb 10;2(18):18cm6. doi: 10.1126/scitranslmed.3000764.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验