Suppr超能文献

一种用于容积性脑图像的自动病理分类级别标注系统。

An automated pathological class level annotation system for volumetric brain images.

作者信息

Dinh Thien Anh, Silander Tomi, Lim C C Tchoyoson, Leong Tze-Yun

机构信息

National University of Singapore, Singapore.

出版信息

AMIA Annu Symp Proc. 2012;2012:1201-10. Epub 2012 Nov 3.

Abstract

We introduce an automated, pathological class level annotation system for medical volumetric brain images. While much of the earlier work has mainly focused on annotating regions of interest in medical images, our system does not require annotated region level training data nor assumes perfect segmentation results for the regions of interest; the time and effort needed for acquiring training data are hence significantly reduced. This capability of handling high-dimensional noisy data, however, poses additional technical challenges, since statistical estimation of models for such data is prone to over-fitting. We propose a framework that combines a regularized logistic regression method and a kernel-based discriminative method to address these problems. Regularized methods provide a flexible selection mechanism that is well-suited for high dimensional noisy data. Our experiments show promising results in classifying computer tomography images of traumatic brain injury patients into pathological classes.

摘要

我们推出了一种用于医学脑部容积图像的自动化病理类别级注释系统。虽然早期的许多工作主要集中在注释医学图像中的感兴趣区域,但我们的系统既不需要带注释的区域级训练数据,也不假设感兴趣区域有完美的分割结果;因此,获取训练数据所需的时间和精力显著减少。然而,处理高维噪声数据的这种能力带来了额外的技术挑战,因为对此类数据的模型进行统计估计容易出现过拟合。我们提出了一个框架,该框架结合了正则化逻辑回归方法和基于核的判别方法来解决这些问题。正则化方法提供了一种灵活的选择机制,非常适合高维噪声数据。我们的实验在将创伤性脑损伤患者的计算机断层扫描图像分类为病理类别方面显示出了有希望的结果。

相似文献

4
'Squeeze & excite' guided few-shot segmentation of volumetric images.“Squeeze & excite”引导的容积图像少样本分割。
Med Image Anal. 2020 Jan;59:101587. doi: 10.1016/j.media.2019.101587. Epub 2019 Oct 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验