Ranger Jochen, Kuhn Jörg-Tobias
Martin Luther University Halle-Wittenberg, Halle, Germany.
University of Münster, Münster, Germany.
Educ Psychol Meas. 2016 Aug;76(4):562-586. doi: 10.1177/0013164415598347. Epub 2015 Aug 13.
In this article, a new model for test response times is proposed that combines latent class analysis and the proportional hazards model with random effects in a similar vein as the mixture factor model. The model assumes the existence of different latent classes. In each latent class, the response times are distributed according to a class-specific proportional hazards model. The class-specific proportional hazards models relate the response times of each subject to his or her work pace, which is considered as a random effect. The latent class extension of the proportional hazards model allows for differences in response strategies between subjects. The differences can be captured in the hazard functions, which trace the progress individuals make over time when working on an item. The model can be calibrated with marginal maximum likelihood estimation. The fit of the model can either be assessed with information criteria or with a test of model fit. In a simulation study, the performance of the proposed approaches to model calibration and model evaluation is investigated. Finally, the model is used for a real data set.
在本文中,提出了一种新的测试响应时间模型,该模型将潜在类别分析和具有随机效应的比例风险模型相结合,其思路与混合因子模型类似。该模型假设存在不同的潜在类别。在每个潜在类别中,响应时间根据特定类别的比例风险模型进行分布。特定类别的比例风险模型将每个受试者的响应时间与其工作节奏相关联,工作节奏被视为一个随机效应。比例风险模型的潜在类别扩展允许受试者之间的响应策略存在差异。这些差异可以在风险函数中体现出来,风险函数追踪个体在处理一个项目时随时间的进展情况。该模型可以通过边际最大似然估计进行校准。模型的拟合度可以通过信息准则或模型拟合检验来评估。在一项模拟研究中,对所提出的模型校准和模型评估方法的性能进行了研究。最后,该模型被应用于一个真实数据集。