Bulteel Kirsten, Tuerlinckx Francis, Brose Annette, Ceulemans Eva
Faculty of Psychology and Educational Sciences, KU Leuven Leuven, Belgium.
Faculty of Psychology and Educational Sciences, KU LeuvenLeuven, Belgium; Institute for Psychology, Humboldt University BerlinBerlin, Germany.
Front Psychol. 2016 Oct 7;7:1540. doi: 10.3389/fpsyg.2016.01540. eCollection 2016.
In psychology, studying multivariate dynamical processes within a person is gaining ground. An increasingly often used method is vector autoregressive (VAR) modeling, in which each variable is regressed on all variables (including itself) at the previous time points. This approach reveals the temporal dynamics of a system of related variables across time. A follow-up question is how to analyze data of multiple persons in order to grasp similarities and individual differences in within-person dynamics. We focus on the case where these differences are qualitative in nature, implying that subgroups of persons can be identified. We present a method that clusters persons according to their VAR regression weights, and simultaneously fits a shared VAR model to all persons within a cluster. The performance of the algorithm is evaluated in a simulation study. Moreover, the method is illustrated by applying it to multivariate time series data on depression-related symptoms of young women.
在心理学领域,研究个体内部的多元动态过程正逐渐兴起。一种越来越常用的方法是向量自回归(VAR)建模,其中每个变量都基于前一时间点的所有变量(包括其自身)进行回归。这种方法揭示了相关变量系统随时间的动态变化。一个后续问题是如何分析多个人的数据,以便把握个体内部动态的相似性和个体差异。我们关注的是这些差异本质上是定性的情况,这意味着可以识别出不同的人群亚组。我们提出了一种根据个体的VAR回归权重对人群进行聚类的方法,同时为聚类中的所有人拟合一个共享的VAR模型。在一项模拟研究中评估了该算法的性能。此外,通过将该方法应用于年轻女性抑郁相关症状的多元时间序列数据来说明这一方法。