Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
Cerebellum. 2013 Jun;12(3):300-3. doi: 10.1007/s12311-012-0439-6.
The p75 neurotrophin receptor is highly expressed in the developing nervous system and is required for neuronal survival, growth, and synaptic transmission. In young mice, p75 is present in both granular cells and Purkinje cells of the cerebellum. Although p75 has been implicated in modulation of neuronal excitability in several neuronal types, whether and how it affects the excitability of cerebellar Purkinje neurons remained unclear. Using extracellular recordings of spontaneous firing of Purkinje neurons in cerebellar slices prepared from wild type and p75 knockout mice, we measured intrinsic firing properties in the presence of fast synaptic blockers of more than 200 Purkinje cells, each for a period of 5 min, for each genotype. We detected a significant increase in the mean firing frequency in p75(-/-) neurons comparing to the wild type littermates. Upon separating tonically firing from phasically firing cells, i.e., cells with firing pauses of longer than 300 ms, we observed that the change mainly arose from phasic firing cells and can be explained by an increase in the firing/silence ratio and a decrease in the number of long pauses during the 5-min recording period. We conclude that p75 plays an important role in regulating the firing-to-silence transition during the phasic firing period of the spontaneous firing of Purkinje cells. Thus, p75 exerts a modulatory function on Purkinje cell firing patterns, through which it may act as a key player in motor coordination and other cerebellum-regulated activities since Purkinje cells represent the sole neuronal output of the cerebellar cortex.
p75 神经生长因子受体在发育中的神经系统中高度表达,是神经元存活、生长和突触传递所必需的。在幼鼠中,p75 存在于小脑的颗粒细胞和浦肯野细胞中。尽管 p75 已被牵连到几种神经元类型的神经元兴奋性的调节中,但它是否以及如何影响小脑浦肯野神经元的兴奋性仍不清楚。我们使用从野生型和 p75 敲除小鼠制备的小脑切片中的浦肯野神经元自发放电的细胞外记录,在存在快速突触抑制剂的情况下测量了超过 200 个浦肯野细胞的每个细胞的内在放电特性,每个细胞持续 5 分钟,对于每种基因型。与野生型同窝仔相比,我们检测到 p75(-/-)神经元的平均放电频率显著增加。在将持续放电的细胞与相位放电的细胞(即,具有大于 300ms 的放电暂停的细胞)分离后,我们观察到该变化主要来自相位放电的细胞,并且可以通过增加放电/静默比和在 5 分钟记录期间减少长暂停数来解释。我们得出结论,p75 在调节浦肯野细胞自发放电的相位放电期间的放电到静默的转换中起重要作用。因此,p75 通过调节浦肯野细胞的放电模式发挥调节作用,通过这种方式,它可能作为运动协调和其他小脑调节活动的关键参与者发挥作用,因为浦肯野细胞代表小脑皮层的唯一神经元输出。