Suppr超能文献

Caspase-11 可被 Legionella pneumophila 激活,从而引发依赖于 flagellin 的快速细胞焦亡。

Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila.

机构信息

Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1851-6. doi: 10.1073/pnas.1211521110. Epub 2013 Jan 10.

Abstract

A flagellin-independent caspase-1 activation pathway that does not require NAIP5 or NRLC4 is induced by the intracellular pathogen Legionella pneumophila. Here we demonstrate that this pathway requires caspase-11. Treatment of macrophages with LPS up-regulated the host components required for this caspase-11 activation pathway. Activation by Legionella differed from caspase-11 activation using previously described agonists in that Legionella caspase-11 activation was rapid and required bacteria with a functional type IV secretion system called Dot/Icm. Legionella activation of caspase-11 induced pyroptosis by a mechanism independent of the NAIP/NLRC4 and caspase-1 axis. Legionella activation of caspase-11 stimulated activation of caspase-1 through NLRP3 and ASC. Induction of caspase-11-dependent responses occurred in macrophages deficient in the adapter proteins TRIF or MyD88 but not in macrophages deficient in both signaling factors. Although caspase-11 was produced in macrophages deficient in the type-I IFN receptor, there was a severe defect in caspase-11-dependent pyroptosis in these cells. These data indicate that macrophages respond to microbial signatures to produce proteins that mediate a capsase-11 response and that the caspase-11 system provides an alternative pathway for rapid detection of an intracellular pathogen capable of evading the canonical caspase-1 activation system that responds to bacterial flagellin.

摘要

一种不依赖鞭毛蛋白的半胱天冬酶-1 激活途径,该途径不需要 NAIP5 或 NRLC4,由细胞内病原体军团菌诱导。在这里,我们证明该途径需要半胱天冬酶-11。LPS 处理巨噬细胞可上调该半胱天冬酶-11 激活途径所需的宿主成分。军团菌的激活与先前描述的激动剂对半胱天冬酶-11 的激活不同,因为军团菌对半胱天冬酶-11 的激活是快速的,并且需要一种功能性的 IV 型分泌系统,称为 Dot/Icm。半胱天冬酶-11 的激活通过独立于 NAIP/NLRC4 和半胱天冬酶-1 轴的机制诱导细胞焦亡。军团菌对半胱天冬酶-11 的激活通过 NLRP3 和 ASC 刺激半胱天冬酶-1 的激活。在缺乏衔接蛋白 TRIF 或 MyD88 的巨噬细胞中诱导半胱天冬酶-11 依赖性反应,但在缺乏两种信号因子的巨噬细胞中没有诱导。尽管缺乏 I 型 IFN 受体的巨噬细胞中产生了半胱天冬酶-11,但这些细胞中半胱天冬酶-11 依赖性细胞焦亡存在严重缺陷。这些数据表明,巨噬细胞对微生物特征做出反应,产生介导半胱天冬酶-11 反应的蛋白质,并且半胱天冬酶-11 系统为快速检测能够逃避响应细菌鞭毛蛋白的经典半胱天冬酶-1 激活系统的细胞内病原体提供了另一种途径。

相似文献

1
Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila.
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1851-6. doi: 10.1073/pnas.1211521110. Epub 2013 Jan 10.
5
Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf.
J Biol Chem. 2006 Nov 17;281(46):35217-23. doi: 10.1074/jbc.M604933200. Epub 2006 Sep 19.
6
7
Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila.
Infect Immun. 2009 May;77(5):1981-91. doi: 10.1128/IAI.01382-08. Epub 2009 Feb 23.
8
Caspase-11 activation in response to bacterial secretion systems that access the host cytosol.
PLoS Pathog. 2013;9(6):e1003400. doi: 10.1371/journal.ppat.1003400. Epub 2013 Jun 6.
9
Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome.
PLoS Pathog. 2017 Aug 3;13(8):e1006502. doi: 10.1371/journal.ppat.1006502. eCollection 2017 Aug.
10
The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus.
Nature. 2011 Sep 14;477(7366):596-600. doi: 10.1038/nature10510.

引用本文的文献

3
Inflammasome signaling in astrocytes modulates hippocampal plasticity.
Immunity. 2025 Jun 10;58(6):1519-1535.e11. doi: 10.1016/j.immuni.2025.04.007. Epub 2025 May 2.
4
Activation of the conserved Hippo kinases by inflammasome-triggered proteolytic cleavage controls programmed cell death in macrophages.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2418613122. doi: 10.1073/pnas.2418613122. Epub 2025 Jan 30.
6
Advances in research on the impact and mechanisms of pathogenic microorganism infections on pyroptosis.
Front Microbiol. 2024 Dec 13;15:1503130. doi: 10.3389/fmicb.2024.1503130. eCollection 2024.
7
, a Rosetta stone to understanding bacterial pathogenesis.
J Bacteriol. 2024 Dec 19;206(12):e0032424. doi: 10.1128/jb.00324-24. Epub 2024 Dec 5.
10
The Role of Pyroptosis in the Pathogenesis of Kidney Diseases.
Kidney Dis (Basel). 2023 Jun 24;9(6):443-458. doi: 10.1159/000531642. eCollection 2023 Dec.

本文引用的文献

2
Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1.
Nature. 2012 Oct 11;490(7419):288-91. doi: 10.1038/nature11419. Epub 2012 Aug 15.
3
TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria.
Cell. 2012 Aug 3;150(3):606-19. doi: 10.1016/j.cell.2012.07.007. Epub 2012 Jul 19.
4
Non-canonical inflammasome activation targets caspase-11.
Nature. 2011 Oct 16;479(7371):117-21. doi: 10.1038/nature10558.
5
The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus.
Nature. 2011 Sep 14;477(7366):596-600. doi: 10.1038/nature10510.
6
Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity.
Nature. 2011 Aug 28;477(7366):592-5. doi: 10.1038/nature10394.
7
Innate immunity to legionella pneumophila.
Front Microbiol. 2011 May 16;2:109. doi: 10.3389/fmicb.2011.00109. eCollection 2011.
9
Detection of prokaryotic mRNA signifies microbial viability and promotes immunity.
Nature. 2011 May 22;474(7351):385-9. doi: 10.1038/nature10072.
10
Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing.
Cell Host Microbe. 2010 Dec 16;8(6):471-83. doi: 10.1016/j.chom.2010.11.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验