Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94158, USA.
Clin Cancer Res. 2013 Apr 1;19(7):1773-83. doi: 10.1158/1078-0432.CCR-12-1281. Epub 2013 Jan 10.
To identify mediators of glioblastoma antiangiogenic therapy resistance and target these mediators in xenografts.
We conducted microarray analysis comparing bevacizumab-resistant glioblastomas (BRG) with pretreatment tumors from the same patients. We established novel xenograft models of antiangiogenic therapy resistance to target candidate resistance mediator(s).
BRG microarray analysis revealed upregulation versus pretreatment of receptor tyrosine kinase c-Met, which underwent further investigation because of its prior biologic plausibility as a bevacizumab resistance mediator. BRGs exhibited increased hypoxia versus pretreatment in a manner correlating with their c-Met upregulation, increased c-Met phosphorylation, and increased phosphorylation of c-Met-activated focal adhesion kinase and STAT3. We developed 2 novel xenograft models of antiangiogenic therapy resistance. In the first model, serial bevacizumab treatment of an initially responsive xenograft generated a xenograft with acquired bevacizumab resistance, which exhibited upregulated c-Met expression versus pretreatment. In the second model, a BRG-derived xenograft maintained refractoriness to the MRI tumor vasculature alterations and survival-promoting effects of bevacizumab. Growth of this BRG-derived xenograft was inhibited by a c-Met inhibitor. Transducing these xenograft cells with c-Met short hairpin RNA inhibited their invasion and survival in hypoxia, disrupted their mesenchymal morphology, and converted them from bevacizumab-resistant to bevacizumab-responsive. Engineering bevacizumab-responsive cells to express constitutively active c-Met caused these cells to form bevacizumab-resistant xenografts.
These findings support the role of c-Met in survival in hypoxia and invasion, features associated with antiangiogenic therapy resistance, and growth and therapeutic resistance of xenografts resistant to antiangiogenic therapy. Therapeutically targeting c-Met could prevent or overcome antiangiogenic therapy resistance.
鉴定胶质母细胞瘤抗血管生成治疗耐药的介质,并针对这些介质在异种移植物中进行靶向治疗。
我们进行了微阵列分析,比较了贝伐单抗耐药性胶质母细胞瘤(BRG)与同一患者的预处理肿瘤。我们建立了新的抗血管生成治疗耐药性的异种移植物模型,以靶向候选耐药介质。
BRG 微阵列分析显示,受体酪氨酸激酶 c-Met 的上调与预处理相比,由于其作为贝伐单抗耐药介质的先前生物学合理性,进一步进行了研究。BRGs 表现出与 c-Met 上调相关的缺氧增加,c-Met 磷酸化增加,以及 c-Met 激活的黏着斑激酶和 STAT3 的磷酸化增加。我们开发了 2 种新的抗血管生成治疗耐药性的异种移植物模型。在第一个模型中,对最初反应性异种移植物进行贝伐单抗的连续治疗产生了一种获得性贝伐单抗耐药的异种移植物,其 c-Met 表达与预处理相比上调。在第二个模型中,BRG 衍生的异种移植物对 MRI 肿瘤血管改变和贝伐单抗的生存促进作用保持耐药。c-Met 抑制剂抑制了该 BRG 衍生的异种移植物的生长。将这些异种移植物细胞转导 c-Met 短发夹 RNA 抑制了它们在缺氧条件下的侵袭和存活,破坏了它们的间充质形态,并将它们从贝伐单抗耐药转化为贝伐单抗敏感。将贝伐单抗敏感细胞工程化表达组成型激活的 c-Met 导致这些细胞形成贝伐单抗耐药的异种移植物。
这些发现支持 c-Met 在缺氧存活和侵袭中的作用,这些特征与抗血管生成治疗耐药性以及抗血管生成治疗耐药的异种移植物的生长和治疗耐药性有关。靶向治疗 c-Met 可能预防或克服抗血管生成治疗耐药性。