Suppr超能文献

GLUT3 上调促进与抗血管生成治疗耐药相关的代谢重编程。

GLUT3 upregulation promotes metabolic reprogramming associated with antiangiogenic therapy resistance.

机构信息

Department of Neurological Surgery.

Department of Radiology.

出版信息

JCI Insight. 2017 Jan 26;2(2):e88815. doi: 10.1172/jci.insight.88815.

Abstract

Clinical trials revealed limited response duration of glioblastomas to VEGF-neutralizing antibody bevacizumab. Thriving in the devascularized microenvironment occurring after antiangiogenic therapy requires tumor cell adaptation to decreased glucose, with 50% less glucose identified in bevacizumab-treated xenografts. Compared with bevacizumab-responsive xenograft cells, resistant cells exhibited increased glucose uptake, glycolysis, C NMR pyruvate to lactate conversion, and survival in low glucose. Glucose transporter 3 (GLUT3) was upregulated in bevacizumab-resistant versus sensitive xenografts and patient specimens in a HIF-1α-dependent manner. Resistant versus sensitive cell mitochondria in oxidative phosphorylation-selective conditions produced less ATP. Despite unchanged mitochondrial numbers, normoxic resistant cells had lower mitochondrial membrane potential than sensitive cells, confirming poorer mitochondrial health, but avoided the mitochondrial dysfunction of hypoxic sensitive cells. Thin-layer chromatography revealed increased triglycerides in bevacizumab-resistant versus sensitive xenografts, a change driven by mitochondrial stress. A glycogen synthase kinase-3β inhibitor suppressing GLUT3 transcription caused greater cell death in bevacizumab-resistant than -responsive cells. Overexpressing GLUT3 in tumor cells recapitulated bevacizumab-resistant cell features: survival and proliferation in low glucose, increased glycolysis, impaired oxidative phosphorylation, and rapid in vivo proliferation only slowed by bevacizumab to that of untreated bevacizumab-responsive tumors. Targeting GLUT3 or the increased glycolysis reliance in resistant tumors could unlock the potential of antiangiogenic treatments.

摘要

临床试验表明,血管内皮生长因子(VEGF)中和抗体贝伐单抗治疗胶质母细胞瘤的反应持续时间有限。在抗血管生成治疗后发生的血管化微环境中,肿瘤细胞需要适应葡萄糖减少,在贝伐单抗治疗的异种移植物中发现葡萄糖减少 50%。与贝伐单抗反应性异种移植物细胞相比,耐药细胞表现出增加的葡萄糖摄取、糖酵解、C NMR 丙酮酸向乳酸的转化以及在低糖条件下的存活。葡萄糖转运蛋白 3 (GLUT3) 在贝伐单抗耐药性与敏感性异种移植物和患者标本中呈 HIF-1α依赖性上调。在氧化磷酸化选择性条件下,耐药细胞与敏感细胞相比,线粒体产生的 ATP 更少。尽管线粒体数量不变,但耐氧细胞的线粒体膜电位低于敏感细胞,证实了较差的线粒体健康,但避免了缺氧敏感细胞的线粒体功能障碍。薄层层析显示贝伐单抗耐药性与敏感性异种移植物中的甘油三酯增加,这种变化是由线粒体应激驱动的。抑制 GLUT3 转录的糖原合酶激酶-3β抑制剂导致贝伐单抗耐药细胞比贝伐单抗敏感细胞死亡更多。在肿瘤细胞中超表达 GLUT3 可重现贝伐单抗耐药细胞的特征:在低糖条件下存活和增殖、增加的糖酵解、受损的氧化磷酸化以及仅通过贝伐单抗快速体内增殖,使其与未经贝伐单抗治疗的贝伐单抗敏感肿瘤的增殖速度一样缓慢。靶向 GLUT3 或耐药肿瘤中增加的糖酵解依赖性可能会挖掘出抗血管生成治疗的潜力。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验