Suppr超能文献

一种用于模拟美国牛群流动的贝叶斯方法:扩大部分观测网络。

A bayesian approach for modeling cattle movements in the United States: scaling up a partially observed network.

机构信息

Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.

出版信息

PLoS One. 2013;8(1):e53432. doi: 10.1371/journal.pone.0053432. Epub 2013 Jan 4.

Abstract

Networks are rarely completely observed and prediction of unobserved edges is an important problem, especially in disease spread modeling where networks are used to represent the pattern of contacts. We focus on a partially observed cattle movement network in the U.S. and present a method for scaling up to a full network based on bayesian inference, with the aim of informing epidemic disease spread models in the United States. The observed network is a 10% state stratified sample of Interstate Certificates of Veterinary Inspection that are required for interstate movement; describing approximately 20,000 movements from 47 of the contiguous states, with origins and destinations aggregated at the county level. We address how to scale up the 10% sample and predict unobserved intrastate movements based on observed movement distances. Edge prediction based on a distance kernel is not straightforward because the probability of movement does not always decline monotonically with distance due to underlying industry infrastructure. Hence, we propose a spatially explicit model where the probability of movement depends on distance, number of premises per county and historical imports of animals. Our model performs well in recapturing overall metrics of the observed network at the node level (U.S. counties), including degree centrality and betweenness; and performs better compared to randomized networks. Kernel generated movement networks also recapture observed global network metrics, including network size, transitivity, reciprocity, and assortativity better than randomized networks. In addition, predicted movements are similar to observed when aggregated at the state level (a broader geographic level relevant for policy) and are concentrated around states where key infrastructures, such as feedlots, are common. We conclude that the method generally performs well in predicting both coarse geographical patterns and network structure and is a promising method to generate full networks that incorporate the uncertainty of sampled and unobserved contacts.

摘要

网络很少被完全观察到,因此预测未观察到的边是一个重要问题,特别是在疾病传播建模中,网络被用来表示接触模式。我们关注美国部分观察到的牛群移动网络,并提出了一种基于贝叶斯推断扩展到完整网络的方法,目的是为美国的传染病传播模型提供信息。观察到的网络是州际兽医检查证书的 10%州分层样本,这些证书是州际移动所必需的;描述了来自 47 个相邻州的大约 20000 次移动,起源和目的地汇总到县一级。我们解决了如何扩展 10%的样本并根据观察到的移动距离预测未观察到的州内移动的问题。基于距离核的边预测并不简单,因为由于潜在的行业基础设施,移动的概率并不总是随着距离的增加而单调下降。因此,我们提出了一种空间显式模型,其中移动的概率取决于距离、每个县的农场数量和动物的历史进口。我们的模型在捕获观察到的网络的整体节点级别的度量(美国县)方面表现良好,包括度中心性和中间中心性;并且比随机网络表现更好。核生成的移动网络还可以更好地捕获观察到的全局网络度量,包括网络大小、传递性、互惠性和 assortativity,优于随机网络。此外,当汇总到州一级(更广泛的与政策相关的地理水平)时,预测的移动与观察到的移动相似,并且集中在关键基础设施(如饲养场)常见的州周围。我们的结论是,该方法通常在预测粗粒度的地理模式和网络结构方面表现良好,是一种很有前途的生成包含抽样和未观察到的接触不确定性的完整网络的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc3/3537632/a7aad8052c84/pone.0053432.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验