Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5181, USA.
Stem Cells Dev. 2013 Jun 1;22(11):1678-92. doi: 10.1089/scd.2012.0466. Epub 2013 Feb 13.
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play a vital role in replenishment of blood cells. In addition to growth factors, energy metabolism plays an important role in cellular proliferation. Oxidative phosphorylation that occurs in the mitochondria is the major source of ATP. In this study, we have investigated the role of peroxisome proliferator-activated-γ coactivator-1α (PGC-1α), a major regulator of mitochondrial biogenesis, in hematopoiesis. PGC-1α is expressed in HSC/HPCs. Loss of PGC-1α minimally affects basal hematopoiesis; however, it significantly impairs stress hematopoiesis. Recovery of hematopoiesis poststress involves rapid proliferation of HSC/HPCs. Growth factors stimulate HSC/HPC proliferation in a dose-dependent manner and this response is modulated by oxygen tension. Although severe hypoxic conditions inhibit HSC/HPC proliferation, mild hypoxia enhances the clonogenic potential; however, the mechanism underlying this phenomenon remains largely unknown. Our studies demonstrate that PGC-1α-mediated mitochondrial biogenesis is critical for the increased clonogenic potential of progenitors under mild hypoxia. Metabolic programming and increased glucose uptake can drive rapid progenitor cell proliferation under relatively low oxygen tension only if the HPC has the capacity to increase PGC-1α expression and mitochondrial biogenesis. Loss of PGC-1α also impairs the long-term repopulating potential of HSCs. Our findings may have therapeutic applications for rapid recovery of blood cells following myeloablation.
造血干细胞(HSCs)和造血祖细胞(HPCs)在血细胞的补充中起着至关重要的作用。除了生长因子外,能量代谢在细胞增殖中也起着重要作用。发生在线粒体中的氧化磷酸化是 ATP 的主要来源。在这项研究中,我们研究了过氧化物酶体增殖物激活受体γ共激活因子-1α(PGC-1α)在造血中的作用,PGC-1α是线粒体生物发生的主要调节因子。PGC-1α在 HSC/HPC 中表达。PGC-1α 的缺失对基础造血的影响很小,但对应激造血的影响显著。应激后造血的恢复涉及 HSC/HPC 的快速增殖。生长因子以剂量依赖性方式刺激 HSC/HPC 的增殖,而这种反应受氧张力的调节。尽管严重的低氧条件会抑制 HSC/HPC 的增殖,但轻度低氧会增强其集落形成潜力;然而,这种现象的机制在很大程度上仍然未知。我们的研究表明,PGC-1α 介导的线粒体生物发生对于轻度低氧下祖细胞克隆形成潜力的增加是至关重要的。代谢编程和葡萄糖摄取的增加可以在相对低氧张力下驱动祖细胞的快速增殖,只要 HPC 有能力增加 PGC-1α 的表达和线粒体生物发生。PGC-1α 的缺失也会损害 HSCs 的长期重定植潜力。我们的发现可能对骨髓清除后血细胞的快速恢复具有治疗应用价值。