Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
Cell Metab. 2013 Jan 8;17(1):132-40. doi: 10.1016/j.cmet.2012.12.005.
Mitochondrial dysfunction and oxidative stress are common features of Down syndrome (DS). However, the underlying mechanisms are not known. We investigated the relationship between abnormal energy metabolism and oxidative stress with transcriptional and functional changes in DS cells. Impaired mitochondrial activity correlated with altered mitochondrial morphology. Increasing fusion capacity prevented morphological but not functional alterations in DS mitochondria. Sustained stimulation restored mitochondrial functional parameters but increased reactive oxygen species production and cell damage, suggesting that reduced DS mitochondrial activity is an adaptive response for avoiding injury and preserving basic cellular functions. Network analysis of genes overexpressed in DS cells demonstrated functional integration in pathways involved in energy metabolism and oxidative stress. Thus, although preventing extensive oxidative damage, mitochondrial downregulation may contribute to increased susceptibility of individuals with DS to clinical conditions in which altered energy metabolism may play a role, such as Alzheimer's disease, diabetes, and some types of autistic spectrum disorders.
线粒体功能障碍和氧化应激是唐氏综合征(DS)的共同特征。然而,其潜在机制尚不清楚。我们研究了异常能量代谢与 DS 细胞转录和功能变化之间的关系。受损的线粒体活性与线粒体形态改变相关。增加融合能力可以防止 DS 线粒体的形态改变,但不能防止功能改变。持续的刺激恢复了线粒体功能参数,但增加了活性氧的产生和细胞损伤,这表明减少 DS 线粒体的活性是一种适应性反应,以避免损伤并维持基本的细胞功能。DS 细胞中过度表达基因的网络分析表明,能量代谢和氧化应激途径中的功能整合。因此,尽管可以防止广泛的氧化损伤,但线粒体下调可能会导致 DS 个体更容易受到可能涉及能量代谢改变的临床情况的影响,如阿尔茨海默病、糖尿病和某些类型的自闭症谱系障碍。