Wildlife Genetics and Genomics Laboratory, Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
Gene. 2013 Mar 15;517(1):37-45. doi: 10.1016/j.gene.2012.12.093. Epub 2013 Jan 9.
We describe whole mitochondrial genome sequences from four subspecies of the common chaffinch (Fringilla coelebs), and compare them to 31 publicly available mitochondrial genome sequences from other Passeriformes. Rates and patterns of mitochondrial gene evolution are analyzed at different taxonomic levels within this avian order, and evidence is adduced for and against the nearly neutral theory of molecular evolution and the role of positive selection in shaping genetic variation of this small but critical genome. We find evidence of mitochondrial rate heterogeneity in birds as in other vertebrates, likely due to differences in mutational pressure across the genome. Unlike in gadine fish and some of the human mitochondrial work we do not observe strong support for the nearly neutral theory of molecular evolution; instead evidence from molecular clocks, distribution of dN/dS ratios at different levels of the taxonomic hierarchy and in different lineages, McDonald-Kreitman tests within Fringillidae, and site-specific tests of selection within Passeriformes, all point to a role for positive selection, especially for the complex I NADH dehydrogenase genes. The protein-coding mitogenome phylogeny of the order Passeriformes is broadly consistent with previously-reported molecular findings, but provides support for a sister relationship between the superfamilies Muscicapoidea and Passeroidea on a short basal internode of the Passerida where relationships have been difficult to resolve. An unexpected placement of the Paridae (represented by Hume's groundpecker) within the Muscicapoidea was observed. Consistent with other molecular studies the mtDNA phylogeny reveals paraphyly within the Muscicapoidea and a sister relationship of Fringilla with Carduelis rather than Emberiza.
我们描述了普通朱雀(Fringilla coelebs)四个亚种的完整线粒体基因组序列,并将其与其他雀形目 31 个公开的线粒体基因组序列进行比较。在这个鸟类目内的不同分类水平上分析了线粒体基因进化的速率和模式,并提供了支持和反对分子进化近中性理论以及正选择在塑造这种小而关键基因组遗传变异中的作用的证据。我们发现鸟类中的线粒体速率异质性与其他脊椎动物中的情况类似,可能是由于基因组中突变压力的差异所致。与 gadine 鱼类和我们所做的一些人类线粒体工作不同,我们没有观察到对分子进化近中性理论的强烈支持;相反,来自分子钟、分类层次不同水平和不同谱系中 dN/dS 比率的分布、Fringillidae 内的 McDonald-Kreitman 检验以及 Passeriformes 内的特定位点选择检验的证据,都指向正选择的作用,尤其是对复杂 I NADH 脱氢酶基因的作用。雀形目动物的蛋白质编码线粒体基因组系统发育与之前报道的分子研究结果基本一致,但为 Muscicapoidea 和 Passeroidea 超科之间的姐妹关系提供了支持,在这个短的基干节点上,鸟类的亲缘关系一直难以确定。观察到 Paridae(代表 Hume 的地雀)在 Muscicapoidea 内的意外位置。与其他分子研究一致,mtDNA 系统发育揭示了 Muscicapoidea 内的并系性以及 Fringilla 与 Carduelis 而不是 Emberiza 的姐妹关系。