Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
J Mol Biol. 2013 Mar 25;425(6):999-1010. doi: 10.1016/j.jmb.2013.01.001. Epub 2013 Jan 8.
The negative regulatory domain (NRD) of the p53 tumor suppressor is intrinsically disordered. It contains several posttranslational modification (PTM) sites that are important for regulation of p53 activity. Calcium-dependent binding of dimeric S100B(ββ) to p53-NRD blocks access to these PTM sites and disrupts the p53 tetramer to inhibit p53 activation. Previous nuclear magnetic resonance (NMR) structural studies have suggested that p53-NRD folds into a stable helix upon binding to S100B(ββ). Intriguingly, despite the well-converged and stably folded nature of the NMR structure ensemble, experimentally resolved intermolecular nuclear Overhauser enhancements (NOEs) are extremely weak; most have 5- to 6-Å upper bounds, and mainly involve the C-terminal segment of p53-NRD. Such a systematic lack of strong intermolecular NOEs could suggest that the p53/S100B(ββ) interface is more dynamic than currently believed. Indeed, extensive atomistic simulations in explicit solvent (with 1.0μs total effective sampling) revealed large heterogeneity in the S100B(ββ)-bound conformation of p53-NRD. Helix unwinding at the C-terminus allows key hydrophobic residues (Leu383 and Phe385) to make more extensive intermolecular contacts, whereas the highly helical N-terminus displays substantial flexibility in packing with S100B(ββ). Importantly, the predicted heterogeneous ensemble as a whole is highly consistent with experimental intermolecular NOEs, although many conformational sub-states coexist and individual sub-states satisfy only subsets of the NOE restraints. Furthermore, the simulated ensemble provides similar shielding of key PTM sites to support p53 inhibition. This study not only provides new insights into the structural basis of the p53/S100B(ββ) recognition but also highlights the importance of recognizing dynamic complexes in structural studies of intrinsically disordered protein interactions.
p53 肿瘤抑制因子的负调节域(NRD)本质上是无规则的。它包含几个翻译后修饰(PTM)位点,这些位点对于调节 p53 活性很重要。二聚体 S100B(ββ)与 p53-NRD 的钙依赖性结合阻止了这些 PTM 位点的接近,并破坏了 p53 四聚体,从而抑制了 p53 的激活。先前的核磁共振(NMR)结构研究表明,p53-NRD 在与 S100B(ββ)结合后折叠成一个稳定的螺旋。有趣的是,尽管 NMR 结构集合收敛良好且折叠稳定,但实验解析的分子间核奥弗豪瑟增强(NOE)非常弱;大多数有 5-6Å 的上限,主要涉及 p53-NRD 的 C 末端片段。这种系统缺乏强的分子间 NOE 可能表明 p53/S100B(ββ)界面比目前认为的更具动态性。事实上,在明确溶剂(总有效采样 1.0μs)中进行的广泛原子模拟揭示了 p53-NRD 与 S100B(ββ)结合构象的巨大异质性。C 末端的螺旋展开允许关键的疏水性残基(Leu383 和 Phe385)进行更广泛的分子间接触,而高度螺旋化的 N 末端在与 S100B(ββ)包装时表现出很大的灵活性。重要的是,预测的异构集合作为一个整体与实验分子间 NOE 高度一致,尽管许多构象亚态共存,并且单个亚态仅满足 NOE 约束的子集。此外,模拟集合还为关键 PTM 位点提供了类似的屏蔽,以支持 p53 抑制。这项研究不仅为 p53/S100B(ββ)识别的结构基础提供了新的见解,而且还强调了在结构研究中识别无序蛋白质相互作用的动态复合物的重要性。