Suppr超能文献

在边缘性癫痫发作的体外模型中对癫痫样兴奋性进行自适应控制。

Adaptive control of epileptiform excitability in an in vitro model of limbic seizures.

机构信息

Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montreal, QC, Canada H3A 2B4.

出版信息

Exp Neurol. 2013 Mar;241:179-83. doi: 10.1016/j.expneurol.2013.01.002. Epub 2013 Jan 9.

Abstract

Deep brain stimulation (DBS) is a promising tool for treating drug-resistant epileptic patients. Currently, the most common approach is fixed-frequency stimulation (periodic pacing) by means of stimulating devices that operate under open-loop control. However, a drawback of this DBS strategy is the impossibility of tailoring a personalized treatment, which also limits the optimization of the stimulating apparatus. Here, we propose a novel DBS methodology based on a closed-loop control strategy, developed by exploiting statistical machine learning techniques, in which stimulation parameters are adapted to the current neural activity thus allowing for seizure suppression that is fine-tuned on the individual scale (adaptive stimulation). By means of field potential recording from adult rat hippocampus-entorhinal cortex (EC) slices treated with the convulsant drug 4-aminopyridine we determined the effectiveness of this approach compared to low-frequency periodic pacing, and found that the closed-loop stimulation strategy: (i) has similar efficacy as low-frequency periodic pacing in suppressing ictal-like events but (ii) is more efficient than periodic pacing in that it requires less electrical pulses. We also provide evidence that the closed-loop stimulation strategy can alternatively be employed to tune the frequency of a periodic pacing strategy. Our findings indicate that the adaptive stimulation strategy may represent a novel, promising approach to DBS for individually-tailored epilepsy treatment.

摘要

深部脑刺激(DBS)是治疗耐药性癫痫患者的一种很有前途的工具。目前,最常见的方法是通过使用开环控制的刺激设备进行固定频率刺激(周期性起搏)。然而,这种 DBS 策略的一个缺点是不可能进行个性化治疗,这也限制了刺激设备的优化。在这里,我们提出了一种基于闭环控制策略的新型 DBS 方法,该方法利用统计机器学习技术开发,其中刺激参数适应当前的神经活动,从而允许在个体尺度上进行精细调整的癫痫抑制(自适应刺激)。通过记录用致惊厥药物 4-氨基吡啶处理的成年大鼠海马-内嗅皮层(EC)切片中的场电位,我们确定了与低频周期性起搏相比,这种方法的有效性,并发现闭环刺激策略:(i)在抑制癫痫样事件方面与低频周期性起搏具有相似的疗效,但(ii)比周期性起搏更有效,因为它需要的电脉冲更少。我们还提供了证据表明,闭环刺激策略可以替代周期性起搏策略来调整其频率。我们的研究结果表明,自适应刺激策略可能代表一种新的、有前途的 DBS 方法,用于针对个体的癫痫治疗。

相似文献

引用本文的文献

2
Progress in Neuroengineering for brain repair: New challenges and open issues.用于脑修复的神经工程学进展:新挑战与未决问题
Brain Neurosci Adv. 2018 May 21;2:2398212818776475. doi: 10.1177/2398212818776475. eCollection 2018 Jan-Dec.
4
Big data in status epilepticus.癫痫持续状态中的大数据。
Epilepsy Behav. 2019 Dec;101(Pt B):106457. doi: 10.1016/j.yebeh.2019.106457. Epub 2019 Aug 21.
7
Dynamiceuticals: The Next Stage in Personalized Medicine.动态药物:个性化医疗的新阶段。
Front Neurosci. 2017 Jun 7;11:329. doi: 10.3389/fnins.2017.00329. eCollection 2017.
8
Future of seizure prediction and intervention: closing the loop.癫痫发作预测与干预的未来:实现闭环
J Clin Neurophysiol. 2015 Jun;32(3):194-206. doi: 10.1097/WNP.0000000000000139.

本文引用的文献

4
Deep brain stimulation for the treatment of epilepsy.深部脑刺激治疗癫痫。
Int J Neural Syst. 2009 Jun;19(3):213-26. doi: 10.1142/S0129065709001975.
5
Deep brain stimulation for medically refractory epilepsy.深部脑刺激治疗药物难治性癫痫。
Neurosurg Focus. 2008 Sep;25(3):E11. doi: 10.3171/FOC/2008/25/9/E11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验