Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
Toxicol Sci. 2013 Apr;132(2):298-306. doi: 10.1093/toxsci/kfs344. Epub 2013 Jan 11.
Exposure to excessive levels of manganese (Mn) is associated with the development of movement disorders, with symptoms overlapping with Parkinson's disease. Oxidative damage has been implicated as a key contributor to Mn-induced neurotoxicity. We have recently reported that divalent Mn (Mn(2+)) stimulates brain microglia to produce and release hydrogen peroxide (H2O2), and microglial-free radical generation facilitates Mn(2+)-induced dopaminergic neurotoxicity. The goal of this study was to elucidate the underlying mechanism of the Mn(2+)-induced H2O2 production in microglia. Exposure to low micromolar concentrations of Mn(2+), but not divalent copper, cadmium, nickel, cobalt, zinc, and iron, induced a significant production of H2O2 from rat microglial but not astroglial cells. Subcellular fractionation studies revealed that Mn(2+) was capable of inducing significant H2O2 production in the mitochondrial but not the cytosolic or nuclear fraction prepared from microglia. Analysis of the relative contribution of mitochondrial respiratory chain complexes indicated that Mn(2+)-induced mitochondrial H2O2 production required the presence of complex II substrate succinate. In contrast, complex I substrates malate and glutamate failed to support H2O2 production in the presence of Mn(2+). Furthermore, the succinate-supported Mn(2+)-induced mitochondrial H2O2 production was abolished by pharmacological inhibition of complex II but not that of complexes I and III, suggesting that mitochondrial complex II is a key mediator in Mn(2+)-induced H2O2 production. These findings advance our knowledge on the mechanisms by which Mn induces oxidative stress and the potential contribution to Mn neurotoxicity.
过量的锰(Mn)暴露与运动障碍的发展有关,其症状与帕金森病重叠。氧化损伤被认为是 Mn 诱导神经毒性的关键因素。我们最近报道,二价锰(Mn(2+))刺激脑小胶质细胞产生和释放过氧化氢(H2O2),并且小胶质细胞自由基的产生促进了 Mn(2+)-诱导的多巴胺能神经毒性。本研究的目的是阐明 Mn(2+)诱导小胶质细胞中 H2O2 产生的潜在机制。暴露于低微摩尔浓度的 Mn(2+),而不是二价铜、镉、镍、钴、锌和铁,会导致大鼠小胶质细胞而非星形胶质细胞产生大量的 H2O2。亚细胞分级研究表明,Mn(2+)能够诱导小胶质细胞线粒体中产生大量的 H2O2,但不能诱导细胞质或核部分产生 H2O2。对线粒体呼吸链复合物相对贡献的分析表明,Mn(2+)-诱导的线粒体 H2O2 产生需要复合物 II 底物琥珀酸的存在。相比之下,在 Mn(2+)存在的情况下,复合物 I 底物苹果酸和谷氨酸均不能支持 H2O2 的产生。此外,琥珀酸支持的 Mn(2+)-诱导的线粒体 H2O2 产生被复合物 II 的药理学抑制所消除,但复合物 I 和 III 的抑制则没有,这表明线粒体复合物 II 是 Mn(2+)-诱导 H2O2 产生的关键介质。这些发现提高了我们对 Mn 诱导氧化应激的机制以及对 Mn 神经毒性的潜在贡献的认识。