Suppr超能文献

神经元表征最大分离背后的网络架构。

Network architecture underlying maximal separation of neuronal representations.

作者信息

Jortner Ron A

机构信息

Interdisciplinary Center for Neural Computation, Hebrew University Jerusalem, Israel.

出版信息

Front Neuroeng. 2013 Jan 3;5:19. doi: 10.3389/fneng.2012.00019. eCollection 2012.

Abstract

One of the most basic and general tasks faced by all nervous systems is extracting relevant information from the organism's surrounding world. While physical signals available to sensory systems are often continuous, variable, overlapping, and noisy, high-level neuronal representations used for decision-making tend to be discrete, specific, invariant, and highly separable. This study addresses the question of how neuronal specificity is generated. Inspired by experimental findings on network architecture in the olfactory system of the locust, I construct a highly simplified theoretical framework which allows for analytic solution of its key properties. For generalized feed-forward systems, I show that an intermediate range of connectivity values between source- and target-populations leads to a combinatorial explosion of wiring possibilities, resulting in input spaces which are, by their very nature, exquisitely sparsely populated. In particular, connection probability ½, as found in the locust antennal-lobe-mushroom-body circuit, serves to maximize separation of neuronal representations across the target Kenyon cells (KCs), and explains their specific and reliable responses. This analysis yields a function expressing response specificity in terms of lower network parameters; together with appropriate gain control this leads to a simple neuronal algorithm for generating arbitrarily sparse and selective codes and linking network architecture and neural coding. I suggest a straightforward way to construct ecologically meaningful representations from this code.

摘要

所有神经系统面临的最基本、最普遍的任务之一,是从生物体的周围环境中提取相关信息。虽然感觉系统可获得的物理信号通常是连续的、可变的、重叠的且有噪声的,但用于决策的高级神经元表征往往是离散的、特定的、不变的且高度可分离的。本研究探讨了神经元特异性是如何产生的问题。受蝗虫嗅觉系统网络结构实验结果的启发,我构建了一个高度简化的理论框架,该框架允许对其关键特性进行解析求解。对于广义的前馈系统,我表明源群体和目标群体之间连接值的中间范围会导致布线可能性的组合爆炸,从而产生本质上人口极其稀疏的输入空间。特别是,在蝗虫触角叶 - 蘑菇体回路中发现的连接概率1/2,有助于最大化跨目标肯扬细胞(KC)的神经元表征的分离,并解释它们的特定且可靠的反应。该分析得出了一个根据较低网络参数表达反应特异性的函数;再加上适当的增益控制,这导致了一种简单的神经元算法,用于生成任意稀疏和选择性的代码,并将网络结构与神经编码联系起来。我提出了一种从该代码构建具有生态意义表征的直接方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76ed/3539730/9248cf696d09/fneng-05-00019-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验