Tamiya Hiroko, Hirota Keiko, Takahashi Yuta, Daitoku Hiroaki, Kaneko Yuta, Sakuta Genki, Iizuka Kei, Watanabe Satoshi, Ishii Naoaki, Fukamizu Akiyoshi
Life Science Center, Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan.
J Recept Signal Transduct Res. 2013;33(1):56-62. doi: 10.3109/10799893.2012.756896. Epub 2013 Jan 15.
S-adenosyl-L-methionine (SAM) is an intermediate metabolite of methionine and serves as the methyl donor for many biological methylation reactions. The synthesis of SAM is catalyzed by SAM synthetase (SAMS), which transfers the adenosyl moiety of adenosine-5'-triphosphate to methionine. In the nematode Caenorhabditis elegans, four sams family genes, sams-1, -3, -4 and -5, are predicted to encode SAMS proteins. However, their physiological roles remain unclear. Here we show that the four predicted SAMS proteins in fact have the ability to catalyze the formation of SAM in vitro, and revealed that only sams-1 mutant animals among the family genes exhibited a significant reduction in egg-laying. Using transgenic animals carrying a transcriptional reporter for each sams gene promoter, we observed that each sams promoter confers a distinct expression pattern with respect to tissue, time of expression and expression level (i.e. promoter specificity). Promoter-swap experiments revealed that the ectopic expression of SAMS-3, -4 or -5 driven by the sams-1 promoter completely rescued egg-laying in sams-1 mutants. These data indicate that SAMS protein function is conserved throughout the entire family.
S-腺苷-L-甲硫氨酸(SAM)是甲硫氨酸的一种中间代谢产物,作为许多生物甲基化反应的甲基供体。SAM的合成由SAM合成酶(SAMS)催化,该酶将三磷酸腺苷的腺苷部分转移到甲硫氨酸上。在线虫秀丽隐杆线虫中,预测有四个sams家族基因,即sams-1、-3、-4和-5,编码SAMS蛋白。然而,它们的生理作用仍不清楚。在这里,我们表明这四种预测的SAMS蛋白实际上具有在体外催化SAM形成的能力,并发现该家族基因中只有sams-1突变动物的产卵量显著减少。使用携带每个sams基因启动子转录报告基因的转基因动物,我们观察到每个sams启动子在组织、表达时间和表达水平方面赋予了不同的表达模式(即启动子特异性)。启动子交换实验表明,由sams-1启动子驱动的SAMS-3、-4或-5的异位表达完全挽救了sams-1突变体的产卵。这些数据表明SAMS蛋白功能在整个家族中是保守的。