Suppr超能文献

单因素异方差方差分析中韦尔奇检验的样本量确定

Sample size determinations for Welch's test in one-way heteroscedastic ANOVA.

作者信息

Jan Show-Li, Shieh Gwowen

机构信息

Chung Yuan Christian University, Taiwan, Republic of China.

National Chiao Tung University, Taiwan, Republic of China.

出版信息

Br J Math Stat Psychol. 2014 Feb;67(1):72-93. doi: 10.1111/bmsp.12006. Epub 2013 Jan 14.

Abstract

For one-way fixed effects ANOVA, it is well known that the conventional F test of the equality of means is not robust to unequal variances, and numerous methods have been proposed for dealing with heteroscedasticity. On the basis of extensive empirical evidence of Type I error control and power performance, Welch's procedure is frequently recommended as the major alternative to the ANOVA F test under variance heterogeneity. To enhance its practical usefulness, this paper considers an important aspect of Welch's method in determining the sample size necessary to achieve a given power. Simulation studies are conducted to compare two approximate power functions of Welch's test for their accuracy in sample size calculations over a wide variety of model configurations with heteroscedastic structures. The numerical investigations show that Levy's (1978a) approach is clearly more accurate than the formula of Luh and Guo (2011) for the range of model specifications considered here. Accordingly, computer programs are provided to implement the technique recommended by Levy for power calculation and sample size determination within the context of the one-way heteroscedastic ANOVA model.

摘要

对于单向固定效应方差分析,众所周知,均值相等的传统F检验对方差不相等不具有稳健性,并且已经提出了许多方法来处理异方差性。基于关于I型错误控制和检验效能表现的大量实证证据,在方差不齐的情况下,韦尔奇方法经常被推荐为方差分析F检验的主要替代方法。为了提高其实用性,本文考虑了韦尔奇方法在确定达到给定检验效能所需样本量这一重要方面。进行了模拟研究,以比较韦尔奇检验的两个近似检验效能函数在具有异方差结构的各种模型配置下样本量计算的准确性。数值研究表明,在此处考虑的模型规格范围内,利维(1978a)的方法明显比卢和郭(2011)的公式更准确。因此,提供了计算机程序来实现利维推荐的技术,以便在单向异方差方差分析模型的背景下进行检验效能计算和样本量确定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验