Suppr超能文献

应用于全数字化乳腺摄影的计算机辅助检测对乳腺癌的检测。

Detection of breast cancer with a computer-aided detection applied to full-field digital mammography.

机构信息

Department of Radiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo Tokyo 1138602, Japan.

出版信息

J Digit Imaging. 2013 Aug;26(4):768-73. doi: 10.1007/s10278-012-9564-5.

Abstract

A study was conducted to evaluate the sensitivity of computer-aided detection (CAD) with full-field digital mammography in detection of breast cancer, based on mammographic appearance and histopathology. Retrospectively, CAD sensitivity was assessed in total group of 152 cases for subgroups based on breast density, mammographic presentation, lesion size, and results of histopathological examination. The overall sensitivity of CAD was 91 % (139 of 152 cases). CAD detected 100 % (47/47) of cancers manifested as microcalcifications; 98 % (62/63) of those manifested as non-calcified masses; 100 % (15/15) of those manifested as mixed masses and microcalcifications; 75 % (12/16) of those manifested as architectural distortions, and 69 % (18/26) of those manifested as focal asymmetry. CAD sensitivity was 83 % (10/12) for cancers measuring 1-10 mm, 92 % (37/40) for those measuring 11-20 mm, and 92 % (92/100) for those measuring >20 mm. There was no significant difference in CAD detection efficiency between cancers in dense breasts (88 %; 69/78) and those in non-dense breasts (95 %; 70/74). CAD showed a high sensitivity of 91 % (139/152) for the mammographic appearance of cancer and 100 % sensitivity for identifying cancers manifested as microcalcifications. Sensitivity was not influenced by breast density or lesion size. CAD should be effective for helping radiologists detect breast cancer at an earlier stage.

摘要

一项研究旨在评估全数字化乳腺摄影计算机辅助检测(CAD)在基于乳腺影像学表现和组织病理学的乳腺癌检测中的敏感性。回顾性地,基于乳腺密度、乳腺影像学表现、病变大小和组织病理学检查结果,对总 152 例病例亚组的 CAD 敏感性进行评估。CAD 的总体敏感性为 91%(139/152 例)。CAD 检测到 100%(47/47 例)表现为微钙化的癌症;98%(62/63 例)表现为非钙化肿块的癌症;100%(15/15 例)表现为混合肿块和微钙化的癌症;75%(12/16 例)表现为结构扭曲的癌症;69%(18/26 例)表现为局灶性不对称的癌症。CAD 对直径为 1-10mm 的癌症的敏感性为 83%(10/12 例),对直径为 11-20mm 的癌症的敏感性为 92%(37/40 例),对直径大于 20mm 的癌症的敏感性为 92%(92/100 例)。在致密乳腺(88%;69/78 例)和非致密乳腺(95%;70/74 例)中,CAD 的检测效率之间没有显著差异。CAD 对癌症的乳腺影像学表现的敏感性为 91%(139/152),对表现为微钙化的癌症的敏感性为 100%。敏感性不受乳腺密度或病变大小的影响。CAD 应该对帮助放射科医生更早地发现乳腺癌有效。

相似文献

5
[Impact of breast density on computer-aided detection (CAD) of breast cancer].[乳腺密度对乳腺癌计算机辅助检测(CAD)的影响]
Zhonghua Zhong Liu Za Zhi. 2012 May;34(5):360-3. doi: 10. 3760/cma.j.issn.0253-3766.2012.05.009.

引用本文的文献

5
Radiomics: from qualitative to quantitative imaging.放射组学:从定性成像到定量成像。
Br J Radiol. 2020 Apr;93(1108):20190948. doi: 10.1259/bjr.20190948. Epub 2020 Feb 26.
9
Is the false-positive rate in mammography in North America too high?北美乳房X光检查的假阳性率是否过高?
Br J Radiol. 2016 Sep;89(1065):20160045. doi: 10.1259/bjr.20160045. Epub 2016 Jun 8.
10
Matching methods evaluation framework for stereoscopic breast x-ray images.立体乳腺X线图像的匹配方法评估框架
J Med Imaging (Bellingham). 2016 Jan;3(1):011007. doi: 10.1117/1.JMI.3.1.011007. Epub 2015 Nov 18.

本文引用的文献

6
Does computer-aided detection (CAD) contribute to the performance of digital mammography in a self-referred population?
Breast Cancer Res Treat. 2008 Sep;111(2):373-6. doi: 10.1007/s10549-007-9786-2. Epub 2007 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验