Department of Clinical and Biological Sciences, University of Torino, Orbassano, Turin, Italy.
Pflugers Arch. 2013 Jul;465(7):1031-40. doi: 10.1007/s00424-013-1217-0. Epub 2013 Jan 15.
Catestatin (CST) limits myocardial ischaemia/reperfusion (I/R) injury with unknown mechanisms. Clearly phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) isoforms, including intra-mitochondrial PKCε, mitochondrial KATP (mitoKATP) channels and subsequent reactive oxygen species (ROS)-signalling play important roles in postconditioning cardioprotection, preventing mitochondrial permeability transition pore (mPTP) opening. Therefore, we studied the role of these extra- and intra-mitochondrial factors in CST-induced protection. Isolated rat hearts and H9c2 cells underwent I/R and oxidative stress, respectively. In isolated hearts CST (75nM, CST-Post) given in early-reperfusion significantly reduced infarct size, limited post-ischaemic contracture, and improved recovery of developed left ventricular pressure. PI3K inhibitor, LY-294002 (LY), large spectrum PKC inhibitor, Chelerythrine (CHE), specific PKCε inhibitor (εV1-2), mitoKATP channel blocker, 5-Hydroxydecanoate (5HD) or ROS scavenger, 2-mercaptopropionylglycine (MPG) abolished the infarct-sparing effect of CST. Notably the CST-induced contracture limitation was maintained during co-infusion of 5HD, MPG or εV1-2, but it was lost during co-infusion of LY or CHE. In H9c2 cells challenged with H2O2, mitochondrial depolarization (an index of mPTP opening studied with JC1-probe) was drastically limited by CST (75nM). Our results suggest that the protective signalling pathway activated by CST includes mitoKATP channels, ROS signalling and prevention of mPTP opening, with a central role for upstream PI3K/Akt and PKCs. In fact, all inhibitors completely abolished CST-infarct-sparing effect. Since CST-anti-contracture effect cannot be explained by intra-mitochondrial mechanisms (PKCε activation and mitoKATP channel opening) or ROS signalling, it is proposed that these downstream signals are part of a reverberant loop which re-activates upstream PKCs, which therefore play a pivotal role in CST-induced protection.
缩胆囊肽(CST)通过未知机制限制心肌缺血/再灌注(I/R)损伤。显然,磷酸肌醇-3-激酶(PI3K)、蛋白激酶 C(PKC)同工酶,包括线粒体 PKCε、线粒体 KATP(mitoKATP)通道和随后的活性氧(ROS)信号在心脏后处理的保护中发挥重要作用,防止线粒体通透性转换孔(mPTP)开放。因此,我们研究了这些线粒体内外因素在 CST 诱导保护中的作用。分离的大鼠心脏和 H9c2 细胞分别经历 I/R 和氧化应激。在分离的心脏中,在再灌注早期给予 CST(75nM,CST-Post)可显著减少梗死面积,限制缺血后收缩,并改善左心室压力的发展。PI3K 抑制剂 LY-294002(LY)、广谱 PKC 抑制剂 Chelerythrine(CHE)、特异性 PKCε抑制剂(εV1-2)、mitoKATP 通道阻断剂 5-羟基癸酸(5HD)或 ROS 清除剂 2-巯基丙酰甘氨酸(MPG)均消除了 CST 的梗死保护作用。值得注意的是,在 5HD、MPG 或 εV1-2 共输注期间,CST 诱导的收缩限制得以维持,但在 LY 或 CHE 共输注期间,该限制丢失。在 H2O2 挑战的 H9c2 细胞中,JC1 探针研究的线粒体去极化(mPTP 开放的指标)被 CST(75nM)极大地限制。我们的结果表明,CST 激活的保护信号通路包括 mitoKATP 通道、ROS 信号和防止 mPTP 开放,上游 PI3K/Akt 和 PKC 起核心作用。事实上,所有抑制剂完全消除了 CST 的梗死保护作用。由于 CST 抗收缩作用不能用线粒体机制(PKCε 激活和 mitoKATP 通道开放)或 ROS 信号解释,因此,这些下游信号是再激活上游 PKC 的回荡环的一部分,因此在 CST 诱导的保护中发挥关键作用。